主管单位:国家教育部
主办单位:武汉大学 北京大学 南京大学
创刊日期:1985
刊期:双月刊
国际标准刊号:ISSN 1006-6144
国内刊号:CN42-1338/O
国内邮发代号:38-202
单价:18.00/册
摘 要:以膦酰基羧酸共聚物为修饰剂,采用水热法制备了LaPO4∶Ce,Tb发光纳米粒子,该粒子具有良好的水溶性和生物相容性。对合成的纳米粒子进行了发光光谱、X-射线衍射、透射电子显微镜和红外光谱表征。以制备的纳米粒子为能量供体,纳米金为能量受体,细胞色素C(Cyt C)为桥,构建了LaPO4∶Ce,Tb-Au发光共振能量转移(LRET)体系,据此建立了测定Cyt C的新方法。实验结果表明,当Cyt C的浓度在0333~21.0 μg·mL-1范围时,LRET体系发光猝灭程度与Cyt C浓度呈良好线性关系,检出限(S/N=3)为0.2 μg·mL-1,相对标准偏差(RSD)为0.46%(c=10.0 μg·mL-1,n=11)。该方法用于实际样品的测定,回收率范围为100%~101%。
关键词:稀土发光材料;纳米粒子;共振能量转移;细胞色素C
中图分类号:O657.3 文献标识码:A 文章编号:10066144(2017)0217106
参考文献:
[1] Wang Y,Liu T,Wang X S,Song A H.J Mater Res,2013,28(6):848.
[2] Liu Q,Sun Y,Li C G,Zhou J,Li C Y,Yang T S,Zhang X Z,Yi T.ACS Nano,2011,5(4):3146.
[3] LI Z H,LIU J,LIU Z E,YUAN Q.Journal of Analytical Science(李志豪,刘建,刘子恩,袁荃.分析科学学报),2014,30(5):692.
[4] Salman A A,Heidelberg T.J Mater Sci,2014,49:5388.
[5] Lv R,Gai S L,Dai Y L,He F,Niu N,Yang P P.Inorg Chem,2014,53:998.
[6] Gu J Q,Shen J,Sun L D,Yan C H.J Phys Chem C,2008,112(17):6589.
[7] Luo M,Sun T Y,Wang J H,Yang P,Can L,et al.Materials Research Bulletin,2013,48:4454.
[8] Shen J,Sun L D,Zhu J D,Wei L H,Sun H F,Yan C H.Adv Funct Mater,2010,20:3708.
[9] Wang M,Li M,Yu A Y,Wu J,Mao C B.ACS Appl Mater Interfaces,2015,7:28110.
[10]Wen Q,Zhang X,Cai J,Yang P H.Analyst,2014,139:2499.
[11]Stepanova V B,Shurpik D N,Evtugyn V G,Stoikov I I,Evtugyn G A,Osin Y N,Hianik T.Sensor and Actuators B,2016,225:57.
[12]Loo F C,Ng S P,Wu C M L,Kong S K.Sensor and Actuators B,2014,198:416.
[13]Shamsipur M,Molaabasi F,Hosseinkhani S,Rahmati F.Anal Chem,2016,88:2188.
[14]Chen T T,Tian X,Liu C L,Ge J,Chu X,Li Y F.Journal of the American Chemical Society,2015,137:982.
[15]Yan S G,Deng D Y,Li L,Chen Y C,Song H J,Lv Y.Sensor and Actuators B,2016,228:458.
[16]Wang M,Hou W,Mi C C,Wang W X,Xu Z R,Teng H H,Mao C B,Xu S K.Analytical Chemistry,2009,81(21):8783.
[17]Phuruangrat A,Thongtem T,Thongtem S.Rare Met,2015,34(5):301.
[18]ZHANG S C,SHEN G L,LI H S.Journal of Analytical Science(张顺超,沈国励,李合松.分析科学学报),2015,31(4):560.
Determination of Cytochrome C Based on Luminescence
Resonance Energy Transfer between LaPO4∶Ce,Tb
Nanoparticles and Gold Nanoparticles
YANG Hong-yan1, YU Yong-li*1, WANG Yue-hong1, WANG Meng2
(1.College of Science,Northeastern University,Shenyang 110819;
2.Department of Trace Examination,China Criminal Police College,Shenyang 110035)
Abstract:Copolymer of phosphono and carboxylic acid(POCA) modified LaPO4∶Ce,Tb nanoparticles(LaPO4∶Ce,Tb NPs) with good water-solubility were synthesized by hydrothermal method,and characterized by luminescence spectrum,X-ray diffraction(XRD),transmission electron microscopy(TEM) and Fourier transform infrared (FT-IR) spectrometer.In this paper,a luminescence resonance energy transfer(LRET) system using the synthesized LaPO4∶Ce,Tb NPs and gold nanoparticles(Au NPs) as the energy donor and acceptor,respectively,and the cytochrome C(Cyt C) as bridge,was constructed for the determination of Cyt C.As a result,the quenching of the luminescence intensity in the LRET syetem was linearly correlated to the concentration of Cyt C in the range of 0.333-21.0 μg·mL-1.Such bridge-type LRET-based approach can reach a detection limit of 0.2 μg·mL-1(S/N=3) with relative standard deviation(RSD) of 0.46%(c=10.0 μg·mL-1,n=11).The proposed method was successfully applied in the determination of Cyt C in samples,with the recoveries of 100%-101%.
Keywords:Rare earth luminescent materials;Nanoparticles;Luminescence resonance energy transfer;Cytochrome C
摘 要:通过真空抽滤方法得到均匀致密的高导电多壁碳纳米管(MWCNTs)薄膜,利用聚二甲基硅氧烷(PDMS)对其进行封闭处理,制备出末端可裁切的PDMS基柔性碳纳米管薄膜电极,其裁切端面为电化学传感界面。在十六烷基三甲基溴化铵(CTAB)的增敏作用下,所制备的电化学传感器对双酚A(BPA)具有灵敏的电化学响应,其峰电流与BPA浓度在005~05 μmol/L和 0.5~12 μmol/L范围内呈良好的线性关系,检测限为50 nmol/L。通过电极末端的重复裁切可避免电极污染,并实现电极表面的快速更新和重复使用。对同一支电极进行13次连续裁切,用于10 μmol/L BPA的检测,其相对标准偏差为3.4%。将该传感器应用于热敏纸样品中BPA的检测,加标回收率在95%~105%之间。
关键词:多壁碳纳米管;聚二甲基硅氧烷;可裁切电极;电化学传感器;双酚A
中图分类号:O657.1 文献标识码:A 文章编号:10066144(2017)0216506
参考文献:
[1] Singh S,Li S S L.Gene,2012,494:85.
[2] Lu S Y,Chang W J,Sojinu S O,Ni H G.Chemosphere,2013,92:1190.
[3] Ma X X,Li Q L,Yuan D X.Talanta,2011,85:2212.
[4] Nicolucci C,Rossi S,Menale C,del Giudice E M,Perrone L,Gallo P,Mita D G,Diano N.Analytical and Bioanalytical Chemistry,2013,405:9139.
[5] Ros O,Vallejo A,Blanco-Zubiaguirre L,Olivares M,Delgado A,Etxebarria N,Prieto A.Talanta,2015,134:247.
[6] Huang H,Li Y X,Liu J T,Tong J,Su X G.Food Chemistry,2015,185:233.
[7] Yang Y Y,Zhang H,Huang C S,Jia N Q.Sensors and Actuators B:Chemical,2016,235:408.
[8] Ndlovu T,Arotiba O A,Sampath S,Krause R W,Mamba B B.Sensors,2012,12:11601.
[9] Yan X P,Zhou C Q,Yan Y,Zhu Y.Electroanalysis,2015,27:2718.
[10]Tu X M,Yan L S,Luo X B,Luo S L,Xie Q J.Electroanalysis,2009,21:2491.
[11]Yin H S,Zhou Y L,Ai S Y.Journal of Electroanalytical Chemistry,2009,626:80.
[12]Qiu W L,Xu M Z,Li R X,Liu X M,Zhang M N.Analytical Chemistry,2016,88:1117.
[13]Hu C G,Ding Y,Ji Y P,Xu J H,Hu S S.Carbon,2010,48:1345.
[14]Kim B K,Kim J Y,Kim D H,Choi H N,Lee W Y.Bulletin of the Korean Chemical Society,2013,34:1065.
[15]Zheng Z X,Du Y L,Wang Z H,Feng Q L,Wang C M.The Analyst,2013,138:693.
[16]Zhang Y,Wang L T,Lu D B,Shi X Z,Wang C M,Duan X J.Electrochimica Acta,2012,80:77.
[17]Sun J Y,Liu Y,Lv S M,Huang Z R,Cui L,Wu T.Electroanalysis,2016,28:439.
[18]Li Y H,Zhai X R,Liu X S,Wang L,Liu H R,Wang H B.Talanta,2016,148:362.
Reusable Flexible Thin-Film Electrochemical Sensor Based on
PDMS-MWCNTs Composite Films for Bisphenol A Detection
LONG Juan, HU Cheng-guo*
(Key Laboratory of Analytical Chemistry for Biology and Medicine(Ministry of Education),
College of Chemistry and Molecular Sciences,Wuhan University,Wuhan 430072)
Abstract:In this work,a reusable thin-film electrochemical sensor for the sensitive detection of bisphenol A(BPA) was developed.The sensor was constructed by firstly preparing multi-walled carbon nanotubes(MWCNTs) thin films through vacuum filtration and then sealing the MWCNTs film with polydimethlysiloxane(PDMS) to form a PDMS-MWCNTs thin-film electrode.The proposed electrochemical sensor showed a sensitive electrochemical response towards BPA with the enhancement effect of cationic surfactant cetyltrimethyl ammonium bromide(CTAB).The oxidation peak current of BPA linearly increased with its concentration in the range of 0.05-0.5 μmol/L and 0.5-12 μmol/L,along with a detection limit of 50 nmol/L.The rapid regeneration and reusability of the electrode was realized by cutting and removing the fouled electrode area.The relative standard deviation of the same electrode with 13 successive cutting and measurements was 3.4% for 10 μmol/L BPA.This electrochemical sensor was successfully applied to the detection of BPA in receipt paper samples,and acceptable recoveries in the range of 95%-105% were obtained.
Keywords:Multi-walled carbon nanotubes;Polydimethlysiloxane;Sectional electrode;Electrochemical sensors;Bisphenol A
摘 要:报道了一种基于金纳米粒子(AuNPs)双重信号放大的高灵敏电化学免疫传感器,并应用于肝癌标志物甲胎蛋白(AFP)的检测。通过在丝网印刷电极(SPE)表面电沉积AuNPs提高电极的重现性,利用AuNPs的吸附作用固定AFP抗体,用于捕获样品中的待测AFP抗原,并进一步与固定了辣根过氧化物酶(HRP)标记检测抗体的纳米金免疫探针发生特异性结合,所形成的夹心免疫复合物可以催化底物得到响应电流。用扫描电镜(SEM)和微分脉冲伏安法(DPV)等技术研究电极组装过程以及电极的化学性质,讨论了影响免疫传感器性能的因素。在最优实验条件下,传感器的峰电流信号与AFP浓度在2.5~30 ng/mL范围内呈良好的线性关系,检出限为0.16 ng/mL。该传感器具有灵敏度高、成本低、仪器体积小的优点,具有较好的应用前景。
关键词:丝网印刷电极;甲胎蛋白(AFP);电化学免疫传感器
中图分类号:O657.1 文献标识码:A 文章编号:10066144(2017)0215906
参考文献:
[1] Jayanthi V S P K,Das A B,Saxena U.Biosensors and Bioelectronics,2017,91:15.
[2] Du D,Zou Z,Shin Y,et al.Analytical Chemistry,2010,82(7):2989.
[3] Barlow R D,Thompson S G,Cuckle H S,et al.Annals of Chinical Biochemistry,1986,23(3):334.
[4] Christopoulos T K,Lianidou E S,Diamandis E P.Clinical Chemistry,1990,36(8):1497.
[5] Kemp H A,Simpson J S,Woodhead J S.Clinical Chemistry,1981,27(8):1388.
[6] Z F,C H,X F,et al.Journal of Immunological Methods,2006,312(1-2):61.
[7] Gan N,Hou J,Hu F,et al.International Journal of Electrochemical Science,2011,6(11):5146.
[8] Jiang W,Yuan R,Chai Y,et al.Analytical Biochemistry,2010,407(1):65.
[9] Giannetto M,Elviri L,Careri M,et al.Biosensors & Bioelectronics,2011,26(5):2232.
[10]Xiong P,Gan N,Cao Y,et al.Materials,2012,5(12):2757.
[11]Shu J,Qiu Z,Zhuang J,et al.Acs Applied Materials & Interfaces,2015,7(42).
[12]ZAYIDAN Sadiki,DU Y,XU J J,et al.Journal of Analytical Science(热木·萨迪克,都颖,徐静娟,等.分析科学学报),2009,25(2):217.
[13]Tang J,Su B,Tang D,et al.Biosensors and Bioelectronics,2010,25(12):2657.
[14]Lin J,Wei Z,Mao C.Biosensors & Bioelectronics,2011,29(1):40.
[15]Liu Y,Yuan R,Chai Y,et al.Bioprocess and Biosystems Engineering,2010,33(5):613.
[16]Frens G.Nature,1972,241(105):20.
[17]Hermanson G T.Bioconjugate Techniques(Third Edition).Elsevier,2013:581.
[18]Zhu L,He J,Cao X,et al.Scientific Reports,2016,6:16092.
[19]SUN S G,CHEN S L.Electrocatalysis.Beijing:Chemical Industry Press(孙世刚,陈胜利.电催化.北京:化学工业出版社),2013:459.
[20]Zhu M,Huang X,Shen H.Journal of Analyticalence,1999.
[21]Daeha Seo,Choong I Y,Im S C,et al.Journal of Physical Chemistry C,2008,112(7):2469.
[22]YANG L G,HU S C,WEI P H,et al.Enzyme Immunoassay.Nanjing:Nanjing University Press(杨利国,胡少昶,魏平华,等.酶免疫测定技术.南京:南京大学出版社),1998:482.
[23]Upan J,Reanpang P,Chailapakul O,et al.Talanta,2015,146:766.
Disposable Screen-printed Electrodes for High Sensitive
Electrochemical Immunosensing of Alpha-fetoprotein
BI Ke, SHI Xiao-wen*, DU Yu-min
(College of Resource and Environment Science,Wuhan University,Wuhan 430079)
Abstract:A disposable electrochemical immunosensor for high sensitive detection of alpha-fetoprotein(AFP) based on the dual-amplification effects of gold nanoparticles(AuNPs) by using disposable screen-printed electrodes(SPE) was reported.To construct the sensor,anti-AFP antibodies were firstly immobilized on the surface of SPE modified with AuNPs,which were in situ formed by cyclic voltammetry.Then,AFP antigens were captured onto the sensor via immunoreactions,followed by further capture and immobilization of HRP-labeled AuNPs immunoprobes,which formed a sandwiched immunosensing structure.Finally,the resulting immunocomplex catalyzed the reduction of hydrogen peroxide(H2O2) using hydroquinone(HQ) as an electron mediator to generate reduction currents.Differential pulse voltammetry(DPV) and scanning electron microscopy(SEM) were used to characterize the construction process and the analytical performance of the sensor.The reduction peak current was linear with the concentration of AFP in the range of 2.5-30 ng/mL under optimized conditions,along with a low detection limit of 0.16 ng/mL.The proposed immunosensor provided a highly sensitive,low-cost,simple and practical method for AFP detection.
Keywords:Screen-printed electrode;Alpha-fetoprotein;Electrochemical immunosensor;Gold nanoparticles
摘 要:本研究采用金种子生长法,通过优化氯金酸溶液用量、生长液pH值以及反应温度等条件,制备出一种全新的小尺寸金纳米星(Au-NSs)颗粒,方法具有可控、稳定、简单、Au-NSs粒径均一等优点。紫外-可见-近红外(UV-Vis-NIR)光谱和透射电子显微镜(TEM)检测表明,该方法制备出的Au-NSs的粒径在40 nm左右,远小于常规方法制得的Au-NSs(~80 nm)。最终制备条件确定为:生长液、金种溶液和抗坏血酸(AA)的体积比为600∶9∶7;生长液的pH≈3.05;制备Au-NSs的温度条件为先冰浴加入金种,回升至室温后加入AA还原。
关键词:种子生长法;金纳米星;小尺寸;纳米颗粒
中图分类号:O657 文献标识码:A 文章编号:10066144(2017)0215405
参考文献:
[1] QU X C,LIANG J M,LI Z.Chinese Jouranl of Lasers(屈晓超,梁佳明,李政.中国激光),2007,34(11):1459.
[2] MA Z F,TIAN L,DI J.Progress in Chemistry(马占芳,田乐,邸静.化学进展),2009,21(1):134.
[3] KOU Y,WANG J,CHEN C Y.Chin J Clin Oncol(寇玉,王静,陈春英.中国肿瘤临床),2014,41(1):51.
[4] JIANG W.Fabrication of Electrochemical DNA Biosensors Based on Carbon Nanomaterials and Gold Nanoparticals.Wuhu:Anhui Normal University(姜炜.基于碳纳米材料和金纳米的电化学DNA生物传感器的制备.芜湖:安徽师范大学),2012.
[5] WANG H J.Fabricating Gold Nanoparticles and Modified on Fiber.Taiyuan:North University of China(王慧娟.金纳米颗粒制备及其在光纤表面的修饰.太原:中北大学),2011.
[6] WANG J.Studies on Gold Nanorods-Based Biosensing and Cancer Photothermal Therapy.Beibei:Southwest University(王健.基于金纳米棒的生物传感与癌症的光热治疗研究.北碚:西南大学),2012.
[7] Zeng J,Zhang Q,Chen J Y,Xia Y N.Nano Letters,2010,10:30.
[8] Bi S,Jia X Q,Ye J Y,Dong Y.Biosensors and Bioelectronics,2015,47:427.
[9] Ghulam J,Marta C.Nanoscale,2015,7:9990.
[10]Wang S J,Huang P,Nie L M.Advanced Materials,2013,25(22):3009.
[11]Kwon K C,Ryu J H,Lee J H.Advanced Materials,2014,26:6436.
[12]He R,Wang Y H,Wang X Y.Nature Communications,2014,5:4327.
[13]Lai Y M,Li F,Sun S Q.Integrated Ferroelectrics,2013,146(1):88.
[14]Jolanda S,Sandra C,Jessem L.Chemical Physics Letters,2014,609:134.
[15]Wang Y S,Serrano A B,Sentosun K.Small,2015,11(34):4314.
[16]Hironori T,Hidehiro S,Nobuyuki I.Langmuir,2002,20:11293.
[17]Stefano M,Simona S,Jolanda S,Maria M.Biosensors and Bioelectronics,2015,74:981.
Preparation of Gold Nanostars with Small Diameters
MA Tao, ZENG Yan, HAN Yan-wei, AI Qiu-shuan, LIANG Feng*
(College of Chemistry and Chemical Enginerring,Wuhan University of Science
and Technology,Wuhan 430081)
Abstract:Small size gold nanostars(Au-NSs) were prepared with seed growth method.Ultraviolet-visible and near infrared spectrophotometric(UV-Vis-NIR) and transmission electron microscopic(TEM) measurements showed that the size of Au-NSs prepared by this method is about 40 nm,which is much smaller than the size of conventional Au-NSs.The optimized conditions to prepare small size Au-NSs are determined as follows∶the volume of growth solution∶the volume of gold seeds∶the volume of L-ascorbic acid(AA) is 6 000 μL∶90 μL∶70 μL;the pH value of growth solution is 3.05;adding gold seeds solution into growth solution in ice bath before the AA was added to the mixture at room temperature.
Keywords:Seed growth method;Gold nanostars;Small size;Nanoparticles
摘 要:利用液-液界面反应体系,使分别溶解在油相中的银前体和水相中的硫前体在液滴界面发生反应,在室温条件下成功制备出近红外荧光Ag2S量子点。采用透射电子显微镜(TEM)、X-射线衍射光谱(XRD)、傅立叶变换红外(FT-IR)光谱和荧光光谱等对产物进行了表征。结果表明,此方法成功制得了粒径较均一的Ag2S量子点,纯化后经加热熟化处理其量子产率可达2.68%。另外实验发现,通过改变投料比即可实现Ag2S量子点的粒径控制及荧光发射峰波长调控(1 170 nm至1 279 nm)。
关键词:界面反应;液滴;近红外;Ag2S;量子点
中图分类号:O657 文献标识码:A 文章编号:10066144(2017)0214905
参考文献:
[1] Welsher K,Sherlock S P,Dai H.Proc Natl Acad Sci USA,2011,108:8943.
[2] Zhang Y,Hong G,Zhang Y,et al.ACS Nano,2012,6:3695.
[3] Gui R,Jin H,Wang Z,et al.Coord Chem Rev,2015,296:91.
[4] Hong G,Robinson J T,Zhang Y,et al.Angew Chem Int Ed,2012,124:9956.
[5] Gu Y P,Cui R,Zhang Z L,et al.J Am Chem Soc,2012,134:79.
[6] Jiang P,Tian Z Q,Zhu C N,et al.Chem Mater,2012,24:3.
[7] Zhu C N,Jiang P,Zhang Z L,et al.ACS Appl Mater Interfaces,2013,5:1186.
[8] Shi L J,Zhu C N,He H,et al.RSC Adv,2016,6:38183.
[9] Jiang P,Zhu C N,Zhang Z L,et al.Biomaterials,2012,33:5130.
[10]Shu Y,Jiang P,Pang D W,et al.Nanotechnology,2015,26:275701.
[11]Pan D,Wang Q,An L.J Mater Chem,2009,19:1063.
[12]Ge J P,Xu S,Liu L P,et al.Chem Eur J,2006,12:3672.
[13]Yamamoto M,Nakamoto M.J Mater Chem,2003,13:2064.
[14]Zhang M,Wei L,Chen H,et al.J Am Chem Soc,2016,138:10173.
[15]Willis A L,Turro N J,O'Brien S.Chem Mater,2005,17:5970.
[16]Zhang Y,Liu Y,Li C,et al.J Phys Chem C,2014,118:4918.
[17]Hines M A,Scholes G D.Adv Mater,2003,15:1844.
[18]Yin Y,Alivisatos A P.Nature,2005,437:664.
Liquid-Liquid Interfacial Synthesis of Ag2S Quantum Dots
with Near-infrared Fluorescence
PAN Liang-jun, MA Hao-tian, TIAN Zhi-quan, ZHANG Zhi-ling*
(Key Laboratory of Analytical Chemistry for Biology and Medicine(Ministry of Education),
College of Chemistry and Molecular Sciences,Wuhan University,Wuhan 430072)
Abstract:At room temperature, liquid-liquid interfacial system was employed to prepare Ag2S quantum dots (QDs) with emissions in the near-infrared region. In this system, silver precursor dissolved in the oil phase can react with sulfur precursor dissolved in the water phase at the liquid-liquid interface. The products were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and fluorescence spectroscopy. The results indicated that as-prepared Ag2S QDs have a relatively narrow size distribution. With the treatment of post-synthesis ripening, the quantum yield (QY) is 2.68%. In addition, Ag2S QDs with different sizes and corresponding emission-tunable spectra (1 170-1 279 nm) can be prepared by changing the precursor Ag∶S feed molar ratio.
Keywords:Interfacial reaction;Droplet;Near-infrared;Ag2S;Quantum dots
编辑部地址:湖北省武昌珞珈山 武汉大学化学楼(化东316)
邮政编码: 430072 电话: (027)68752248 Email: fxkxxb@whu.edu.cn