主管单位:国家教育部
主办单位:武汉大学 北京大学 南京大学
创刊日期:1985
刊期:双月刊
国际标准刊号:ISSN 1006-6144
国内刊号:CN42-1338/O
国内邮发代号:38-202
单价:18.00/册
摘 要:在pH=7.76的弱碱性溶液中,格拉司琼与偶氮胂Ⅲ反应生成具有两个明显正吸收峰的离子缔合物,最大和次大吸收波长分别位于648 nm和602 nm,表观摩尔吸光系数分别为1.44×104、1.01×104 L/(mol·cm),格拉司琼的质量浓度在0~4.4 mg/L范围内服从比尔定律。方法可用于人体血液及药物中格拉司琼含量的测定。
关键词:格拉司琼;偶氮胂Ⅲ;药物;分光光度法
中图分类号:O657.32 文献标识码:A 文章编号:10066144(2017)0229403
参考文献:
[1] Pharmacopoeia Committee for the Ministry of Health of People’s Republic of China.Pharmacopoeia of People’s Republic of China(PartⅡ).Beijing:Chinese Medicine Science and Technology Press(中华人民共和国药典委员会.中华人民共和国药典(第二部).北京:中国医药科技出版社),2010:764.
[2] REN J M,LI Y R,JIANG Y,DING XY,HAO F.The Chinese Journal of Modern Applied Pharmacy(任进民,李艳荣,蒋晔,丁翔宇,郝福.中国现代应用药学杂志),2008,25(4):323.
[3] LI J,GUO Y,ZHAO J G,ZHAO L,ZHANG LH.Applied Chemical Industry(李江,郭永,赵建国,赵璐,张丽华.应用化工),2011,40(4):711.
[4] KUANG Y S,YIN Y,YANG Y Y,ZHANG WS,LIU J.West China Journal of Pharmaceutical Sciences(邝毓姗,尹燕,杨莹莹,张文胜,刘进.华西药学杂志),2009,24(6):615.
[5] LIANG Y F,JIANG Y L,LUO Y H,WEI C Y,WANG Y S.Chinese Pharmaceutical Affairs(梁艳芳,姜亚莉,罗永慧,魏春燕,王延松.中国药事),2012,4:375.
[6] CHEN X,MUHETAER T E H,SONG H,LI M Y.Northwest Pharmaceutical Journal(陈鑫,木合塔尔·吐尔洪,宋海林,李明月.西北药学杂志),2012,2:113.
[7] LI H,TAN Z R.Central South Pharmacy(李浩,谭志荣.中南药学),2008,6(6):701.
[8] CHEN S S,SUN Y Y,WEI Y,WANG K S.Chinese Journal of Pharmaceutical Analysis(陈姗姗,孙莹莹,韦阳,王恪申.药物分析杂志),2013,33(4):576.
Determination of Granisetron in Medicament by
Spectrophotometry with Arsenazo Ⅲ
ZHOU Qing-qing, PENG Jian, JIANG Hong*
(College of Chemistry and Chemical Engineering,Yangtze Normal University,Chongqing 408100)
Abstract:In alkalescent solution of pH=7.76,granisetron reacts with arsenazo Ⅲ to form an ion-association complex with two obvious positive absorption peak.The maximum positive absorption wavelength and sub-major positive absorption wavelength were 648 nm and 602 nm respectively,and apparent molar absorptivity(ε) were 1.44×104 and 1.01×104 L/(mol·cm),respectively.Beer’s law was obeyed in the range within 0-4.4 mg/L of granisetron.The method was applied to determine the content of granisetron in commercially available granisetron hydrochloride medicament and human blood with satisfactory results.
Keywords:Granisetron;Arsenazo Ⅲ;Medicament;Spectrophotometry
摘 要:碱性磷酸酶(ALP)能催化发光底物APLS迅速水解并持续发光,据此建立了化学发光技术检测ALP活性的方法。利用一种新的发光底物APLS,建立微孔板化学发光法检测ALP活性,并对实验条件进行优化。优化后的最适反应条件为:微孔板上每孔加200 μL APLS,在pH=9.5、37℃条件下与ALP反应10 min,多功能酶标仪检测发光光子数(RLU),检测ALP线性范围是0.01~1 U/L。微孔板化学发光法检测ALP,敏感度更高,且操作简便易行。
关键词:碱性磷酸酶;化学发光法;微孔板
中图分类号:O657.39 文献标识码:A 文章编号:10066144(2017)0229103
参考文献:
[1] WANG H.Determination of Alkaline Phosphatase Using Sequeritial Injection Flouorometry Method and Its Application for Evaluation of Milk Product Pasteurization.Dalian:Liaoning Normal University(王欢.顺序注射荧光法测定碱性磷酸酶及其应用.大连:辽宁师范大学),2012.
[2] SHEN J S,WANG J Q,BU D P,et al.China Dairy Industry(申军士,王加启,卜登攀,等.中国乳品工业),2009,37(6):31.
[3] RU P P,WU J,YING Y B,JI F.Chinese Journal of Analytical Chemistry(茹柿平,吴坚,应义斌,季峰.分析化学),2012,40(6):835.
[4] Nie Fei,Luo Kai,Zheng Xiaohui,Zheng Jianbin,Song Zhenghua.Sensors And Actuators B:Chemical,2015,218:152.
[5] LEI Yingjie,Ouyang Jie,ZHANG Youlai,et al.Chinese Journal of Chemistry,2009,27(12):2413.
[6] ZHANG N,BIAN W W,LI Y H.Chinese Journal of Analytical Chemistry(张娜,边玮玮,李耀辉.分析化学),2009,37(5):721.
[7] HUI Y H,Han L Q,YANG G Y,WANG L.Chemistry & Bioengineering(惠永华,韩立强,杨国宇,王路.化学与生物工程),2008,25(3):74.
[8] ZHU Y R,WU F C,LIN Y.Spectroscopy and Spectral Analysis(朱元荣,吴丰昌,林樱.光谱学与光谱分析),2013,33(7):1845.
[9] Hirata S,Kitamura C,Fukushima H,Nakamichi I,Abiko Y,Terashita M,Jimil E.Joumal of Cellular Biochemistry,2010,111(6):1445.
[10]WANG Y,WANG Z L,CUI L G,et al.Chinese Journal of Analytical Chemistry(王宇,王宗良,崔立国,等.分析化学),2012,40(8):1279.
[11]ZHAO Q R,LI M J,LIU J,et al.Progress In Biochemistry and Biophysics(赵启仁,李美佳,刘洁,等.生物化学与生物物理进展),1998,25(1):70.
[12]Albillos S M,Reddy R,Salter R.Journal of Food Protection,2011,74(7):1144.
Microplate Chemiluminescence Method for Alkaline
Phosphatase Detection
LIU Huan, HU Ya-ping, GAO Xi-xi, WANG Peng, DING Fan, WANG Qin-fu*
(Collegeof Life Science and Technology,Dalian University,Dalian 116622)
Abstract:Alkaline phosphatase(ALP) can catalyze its substrate,leading to emit-ting light continuously.In this paper,a new substrate,APLS,was used,and a chemiluminescence technique for detecting alkaline phosphatase on microplate was developed and optimized.The results showed that the linear range for the determination of ALP was 0.01-1 U/L.Compared with other techniques for detecting ALP,this method is more sensitive and simpler.
Keywords:Alkaline Phosphatase;Chemiluminescence technique;Microplate
摘 要:建立了塑料制品和电子电气产品中氧化苯乙烯的气相色谱-质谱(GC-MS)分析方法。样品经甲醇超声萃取,采用GC-MS的全扫描方式和选择离子监测方式(SIM)对氧化苯乙烯进行定性和定量分析、外标法定量。对萃取溶剂、萃取时间以及色谱条件进行了考察。结果表明:氧化苯乙烯在0.05~10 mg/L浓度范围内线性关系良好,相关系数为0.9999,检出限为0.1 mg/kg,在0.5、20、100 mg/kg添加水平下的回收率为90.5%~120.4%,相对标准偏差(RSD)为0.18%~6.95%。该方法简便、准确性好、灵敏度高,能够满足实际检测工作的需要。
关键词:气相色谱-质谱;氧化苯乙烯;塑料制品;电子电气产品
中图分类号:O657.63 文献标识码:A 文章编号:10066144(2017)0228704
参考文献:
[1] FAN C Y.Spices and Its Application.Beijing:Chemical Industry Press(范成有.香料及其应用.北京:化学工业出版社),1990,254.
[2] Weihai Weigao Innovation Co Ltd.China Patent(威海威高创新有限公司.中国专利),01127429.8:2003.
[3] WAND L R,FANG S L.Natural Gas Chemical Industry(王莉蓉,方善伦.天然气化工),2005,30(2):35.
[4] Encyclopedia of Chinese Chemical Products Editorial Board.Encyclopedia of Chinese Chemical Products,2rd E.Beijing:Chemical Industry Press(中国化工产品大全编委会中国化工产品大全编委会.中国化工产品大全)(第二版).北京:化学工业出版社),2002.
[5] JIN H R,YANG W X.Chinese Journal of Industry Medicine(金焕荣,杨文秀.中国工业医学杂志),1995,8(3):168.
[6] JIN H R,WANG L,FAN L F,ZHAO G.Chin J Ind Hyg Occup Dis(金焕荣,王路,范来富,赵贵.中华劳动卫生职业病杂志),2005,23(2):156.
[7] CHEN Z Q,YU J H.China Occupational Medicine(陈自强,于继慧.职业医学),1991,18(1):49.
[8] Tatiana B,Pavel V,Kateǐrina P,Kari H,Bo L.Carcinogenesis,1995,16(10):2357.
[9] The Global Automotive Stakeholder Group(GASG).Global Automotive Declarable Substance List(GADSL).[2015-08-20].http://Plastics.Americanchemistry.Com/GADSL-Document.
[10]TSZ0001G.Control Method for Substances of Environmental Concern.Standards of Toyota Motor Corporation.
[11]ZHONG Y,MAO X J,WANG F,WAN Y Q.Journal of Analytical Science(钟瑶,毛雪金,汪玢,万益群.分析科学学报),2014,30(1):87.
Determination of Styrene Oxide in Plastic,Electrical
and Electronic Products by Gas
Chromatography-Mass Spectrometry
LI Zhi-wei*
(Guangzhou GRG METROLOGY & TEST Co.,LTD,Guangzhou 510656)
Abstract:A method has been developed for the determination of styrene oxide(SO) in plastic,electrical and electronic products by gas chromatography-mass spectrometry.The sample was extracted with methanol under ultrasonic assistance,analyzed by GC-MS under full scan and selected ion monitoring(SIM) mode with the external standard method.The result indicated that the calibration curve showed a good linear relationship in range of 0.05 to 10 mg/L with the correlation coefficient of 0.9999.The detection limit for styrene oxide was 0.1 mg/kg.The average recoveries were in the range of 90.5% to 120.4% at three spiked levels of 0.5,20 and 100 mg/kg with the relative standard deviations of 0.18% to 6.95%.With the advantages of simple,quick,low detection limit,good accuracy and high precision,the method could be used for residue surveillance of Styrene oxide in the plastic,electrical and electronic products.
Keywords:Gas chromatography-mass spectrometry;Styrene oxide;Plastic;Electrical and electronic products
摘 要:本文采用1%四甲基氢氧化铵溶液溶解样品,单氦碰撞池模式直接分析特殊医用配方食品中的铬、钼和硒。研究表明:铬、钼和硒在质量浓度2.0~50.0 μg/L范围内呈良好的线性关系,铬、钼、硒的检出限分别为0.012、0.009和0.009 mg/kg;加标回收率在94%~117%之间,相对标准偏差在1.47%~5.78%之间。本方法对NIST 1849a和FAPAS T07216QC标准物质中铬、钼和硒的测定值与参考值相符。该方法操作简单、快速,适合特殊医用配方食品中铬、钼和硒的同时测定。
关键词:直接进样;电感耦合等离子体质谱法;铬;钼;硒;特殊医用配方食品
中图分类号:O657.63 文献标识码:A 文章编号:10066144(2017)0228304
参考文献:
[1] GB 29922-2013.General Formulas For Special Medical purposes(特殊医学用途配方食品通则).
[2] GB 25596-2010.General Infant Formulas for Special Medical Purposes(特殊医学用途婴儿配方食品通则).
[3] GB/T 5009.123-2014.Determination of Chromium in Foods(食品中铬的测定).
[4] GB 5009.93-2010.Determination of Selenium in Foods(食品中硒的测定).
[5] Poitevin E,Nicolas M,Graveleau L.J AOAC Int,2009,92:1484.
[6] GU Y X,XU H B,GE Y.Journal of Analytical Science(顾宇翔,徐红斌,葛宇.分析科学学报),2010,26(4):481.
[7] Pacquette L H,Szabo A,Thompson J J.J AOAC Int,2011,94(4):1240.
[8] Pacquette L H,Szabo A,Thompson J J.J AOAC Int,2012,95(3):588.
[9] ozak A,Sotyk K,Ostapczuk P.Die Pharmazie-An International Journal of Pharmaceutical Sciences,2004,59(11):824.
[10]YUAN Y,LIU L P.Chin J Health Lab Tec(袁媛,刘丽萍.中国卫生检验杂志),2014,24(13):1876.
[11]FAN X,HAN L,ZHANG R H,et al.Journal of Analytical Science(樊祥,韩丽,张润何,等.分析科学学报),2015,31(3):409.
Determination of Cr,Mo and Se in Formulas for Special
Medical Purpose with Direct Injection-Inductively
Coupled Plasma Mass Spectrometry
FAN Xiang*, SONG Rong-rong, ZHAO Qing-zhu, ZHANG Run-he,
WANG Min, DENG Xiao-jun, HE Yu-ping
(Animals,Plants and Food Inspection & Quarantine Technical center of Shanghai Entry-Exit
Inspection and Quarantine Bureau,Shanghai 200135)
Abstract:Direct injection-inductively coupled plasma mass spectrometry method was used for the simultaneous determination of Cr,Mo,and Se in formulas for special medical purpose.All samples were dissolved by 1% tetramethylammonium hydroxide(TMAH) solution.The study showed that:linear relationship of Cr,Mo and Se were obtained in the range of 2.0-50.0 μg/L,and the detection limits were 0.012,0.009 and 0.009 mg/kg,respectively.Recoveries(n=8) and relative standard deviation(n=8) were 94%-117% and 1.47%-5.78%,respectively.The determination results of NIST 1849a and FAPAS T07216QC standard material are in agreement with the reference values.The method is simple and fast,and suitable for the simultaneous determination of Cr,Mo,and Se in formulas for special medical purpose.
Keywords:Direct injection;Inductively coupled plasma mass spectrometry;Chromium;Selenium;Molybdenum;Formulas for special medical purpose
摘 要:近年来常压敞开式离子源凭借快速、原位、实时离子化样品等优势,被广泛应用于样品快速筛查、真伪鉴定、质谱成像等领域,已成为当今离子源的研究热点,受到了学术界及仪器制造、化学和生物分析等相关产业界的广泛关注。目前,该类离子源朝着克服基体效应、提高样品表面定位能力及增加离子传输距离等方向发展。本文主要介绍了可以很好解决上述问题并具有代表性的三种常压敞开式离子源:电喷雾萃取离子源(EESI)、介质阻挡放电离子源(DBDI)及空气动力辅助离子源(AFAI),重点涉及原理以及在此基础上所做的设计改进和应用进展。
关键词:敞开式离子源;质谱;电喷雾萃取;介质阻挡放电;空气动力辅助
中图分类号:O657.63 文献标识码:A 文章编号:10066144(2017)0227607
参考文献:
[1] Ferguson C D.Development of Non-traditional Bioanalytical Methods for the Study of Pharmacokinetics and Protein Complexes,Dissertations & Theses-Gradworks,2014.
[2] Hart P J,Wey E,McHugh T D,Balakrishnan I,Belgacem O.Microbiological Methods,2015,85(6):437.
[3] Altuntas E,Weber C,Kempe K,Schubert U S.European Polymer Journal,2013,49(8):2172.
[4] Takáts Z,Wiseman J M,Gologan B,Cooks R G.Science,2004,306(5695):471.
[5] Cooks R G,Ouyang Z,Takáts Z,Wiseman J M.Science,2006,311(5767):1566.
[6] Chen Huan-wen,Meng Jian,Wang Wei-ping,Wang Zhi-chang.Chin J Anal Chem,2009,37(2):237.
[7] Chen Huan-wen,Talaty N N,Takats Z,Cooks R G.Anal Chem,2005,77(21):6915.
[8] CHEN H W,ZHANG X,LUO M B.Chinese Journal of Analytical Chemistry(陈焕文,张燮,罗明标.分析化学),2006,34(4):464.
[9] Ding Xue-lu,Duan Yi-Xiang.Mass Spectrometry Reviews,2015,34(4):449.
[10]Chen Huan-wen,Venter A,Cooks R G.Chemical Communications,2006,42(19):2042.
[11]Li Ming,Hu Bin,Li Jian-qiang,Chen Rong,Zhang Xie,Chen Huan-wen.Anal Chem,2009,81(18):7724.
[12]Na Na,Zhao Meng-xia,Zhang Si-chun,Yang Cheng-dui,Zhang Xin-rong.American Society for Mass Spectrometry,2007,18(10):1859.
[13]Na Na,Zhang Chao,Zhao Meng-xia,Zhang Si-chun,Yang Cheng-dui,Fang Xiang,Zhang Xin-rong.Mass Spectrom,2007,42(8):1079.
[14]Harper J D,Charipar N A,Mulligan C C,Zhang Xin-rong,Cooks R G,Ouyang Z.Anal Chem,2008,80(23):9097.
[15]He Jiu-ming,Tang Fei,Luo Zhi-gang,Chen Yi,Xu Jing,Zhang Rui-ping,Wang Xiao-hao,Abliz Zeper.Rapid Commun Mass Spectrom,2011,25(7):843.
[16]Chen Huan-wen,Yang Shui-ping,Wortmann A,Zenobi R.Angew Chem Int Ed,2007,46(40):7591.
[17]Chen Huan-wen,Wortmann A,Zenobi R.Mass Spectrom,2007,42(9):1123.
[18]Chen Huan-wen,Zenobi R.Nature Protocol,2008,3(3):1467.
[19]Li Xue,Hu Bin,Ding Jian-hua,Chen Huan-wen.Nature Protocol,2011,6(7):1010.
[20]Li Ming,Hu Bin,Li Jian-qiang,Chen Rong,Zhang Xie,Chen Huan-wen.Anal Chem,2009,81(18):7724.
[21]Liu Jiang-jiang,Wang He,Manicke N E,Lin Jin-ming,Cooks R G,Ouyang Z.Anal Chem,2010,82(6):2463.
[22]Liu Jiang-jiang,Wang He,Cooks R G,Ouyang Z.Anal Chem,2011,83(20):7608.
[23]Zhang Hua,Gu Hai-wei,Yan Fei-yan,Wang Nan-nan,Wei Yi-ping,Xu Jian-jun,Chen Huan-wen.Scientific Reports,2013,3(6148):2495.
[24]Zhang Hua,Zhu Liang,Luo Li-ping,Wang Nan-nan,Chingin K,Guo Xia-li,Chen Huan-wen.J Agric Food Chem,2013,61(45):10691.
[25]Jiang Jie,Zhang Hong,Li Ming,Dulay M T,Ingram A J,Li Na,You Hong,Zare R N.Anal Chem,2015,87(16):8057.
[26]Li Xue,Fang Xiao-wei,Yu Zhi-qiang,Sheng Guo-ying,Wu Ming-hong,Fu Jia-mo,Chen Huan-wen.Analytica Chimica Acta,2012,748(20):53.
[27]Xu Ning,Zhu Zhi-qiang,Yang Shui-ping,Wang Jiang,Gu Hai-wei1,Zhou Zhen,Chen Huan-wen.Chin J Anal Chem,2013,41(4),523.
[28]Li Xue,Fang Xiao-wei,Yu Zhi-qiang,Sheng Guo-ying,Wu Ming-hong,Fu Jia-mo,Chen Huan-wen.Analytical Methods,2013,5(11):2816.
[29]Tian Yong,Chen Jian,Ouyang Yong-zhong,Qu Guang-bo,Liu Ai-feng,Wang Xue-mei,Liu Chun-xiao,Jian-bo Shi,Chen Huan-wen,Jiang Gui-bin.Analytica Chimica Acta,2014,814(1):49.
[30]ZOU X,WANG H M,LU Y,et al.Acta Chim Sinica(邹雪,王鸿梅,陆燕,等.化学学报),2015,73(8),851.
[31]Huang Ke-ke,Li Ming,Li Hong-mei,Li Meng-wan,Jiang You,Fang Xiang.Sci Rep,2016,6.
[32]Law W S,Wang Rui, Hu Bin,Berchtold C,Meier L,Chen Huan-wen,Zenobi R.Anal Chem,2010,82(11):4494.
[33]Law W S,Chen Huan-wen,Ding Jian-hua,Yang Shui-ping,Zhu Liang,Gamez G,Chingin K,Ren Yu-lin,Zenobi R.Angew Chem Int Ed,2009,48(44):827.
[34]Li Ming,Hu Bin,Li Jian-qiang,Chen Rong,Zhang Xie,Chen Huan-wen.Anal Chem,2009,81(18):7724.
[35]LI J Q,ZHOU Y F,DING J H,et al.Journal of Analytical Chemistry(李建强,周瑜芬,丁健桦,等.分析化学),2008,36(9):1300.
[36]HU B,HAN J,WU Z Z,CHEN H W.Chinese Journal of Chinese Mass Spectrometry Society(胡斌,韩京,吴转璋,陈焕文.质谱学报),2010,31(s):169.
[37]ZHANG Y,PAN S S,ZHU Z Q,et al.Chinese Journal of Analytical Chemistry(张燕,潘素素,朱志强,等.分析化学),2013,41(8):1220.
[38]ZHANG H,REN P P,CHEN J,et al.Journal of Chinese Mass Spectrometry Society(张华,任盼盼,陈健,等.质谱学报),2015,36(5):411.
[39]LU H Y,ZHANG H,ZHOU P,et al.Chemical Journal of Chinese Universities(卢海艳,张华,周鹏,等.高等学校化学学报),2015,36(10):1912.
[40]Hiraoka K,Chen L C,Iwama T,Mandal M K,Ninomiya S,Suzuki H,Ariyada O,Furuya H,Takekawa K.Soc Jpn,2010,58(6):215.
[41]Chen Chun-yi,Chiang Cheng-Hung,Lin Che-Hsin.IEEE Transactions on Plasma Science,2014,42(12):3726.
[42]NING L S,XU M,GUO C A,et al.Chinese Journal of Analytical Chemistry(宁录胜,徐明,郭成安,等.分析化学).2016,44(02):252.
[43]Wright J P,Heywood M S,Thurston G K,Farnsworth P B.Am Soc Mass Spectrom,2013,24(3):335.
[44]Chen Wen-dong,Hou Ke-yong,Hua Lei,Xiong Xing-chuang,Li Hai-yang.Rsc Advances,2014,4(28):14791.
[45]Saha S,Chen L C,Mandal M K,Hiraoka K.Am Soc Mass Spectrom,2013,24(3):341.
[46]Kumano S,Sugiyama M,Yamada M,Nishimura K,Hasegawa H,Morokuma H,Inoue H,Hashimoto Y.Anal Chem,2013,85(10):5033.
[47]Zhou Ya-fei,Wu Zhong-chen,Li Cao,Wang Nan-nan,Zhang Xing-lei,Chen Huan-wen,Xiao Sai-jin.Anal Methods,2014,6(5):1538.
[48]Oradu S A,Cooks R G.Anal Chem,2012,84(24):10576.
[49]Wolf J C,Schaer M,Siegenthaler P,Zenobi R.Anal Chem,2015,87(1),723.
[50]Mirabelli M F,Wolf J C,Zenobi R.Anal Bioanal Chem,2016,408(13):3425.
[51]Huang Guang-ming,Ouyang Z,Cooks R G.Chem Commun,2009,5(5):556.
[52]Huang Guang-ming,Xu Wei,Visbal-Onufrak M A,Ouyang Z,Cooks R G.Analyst,2010,135(4):705.
[53]Gong Xiao-yun,Xiong Xing-chuang,Peng Yue-e,Yang Cheng-dui,Zhang Si-chun,Fang Xiang,Zhang Xin-rong.Talanta,2011,85(5):2458.
[54]Gilbert-López B,Geltenpoth H,Meyer C,Michels A,Hayen H,Molina-Díaz A,García-Reyes J F,Franzke J.Rapid Commun Mass Spectrom,2013,27(3):419.
[55]Ma Xiao-xiao,Zhang Si-chun,Lin Zi-qing,Liu Yue-ying,Xing Zhi,Yang Cheng-dui,Zhang Xin-rong.Analyst,2009,134(9):1863.
[56]Liu Yue-ying,Ma Xiao-xiao,Lin Zi-qing,He Ming-jia J,Han Guo-jun,Yang Cheng-dui,Xing Zhi,Zhang Si-chun,Zhang Xin-rong.Angew Chem Int Ed,2010,49(26):4435.
[57]Maldonado-Torres M,López-Hernández J F,Jiménez-Sandoval P,Winkler R.J Proteome,2014,102:60.
[58]Sun Jiu-feng,Wang Wen-tian,Xu Li,Dong Jun-guo,Gao Wei,Huang Zheng-xu,Cheng Ping,Zhou Zhen.Rapid Commun Mass Spectrom,2015,29(19),1711.
[59]HE J M,LUO Z G,LI N,et al.Chinese Journal of Analytical Chemistry(贺玖明,罗志刚,李秾,等.分析化学),2011,39(11):1743.
[60]LUO Z G,HE J J,HE J M,et al.Journal of Instrumental Analysis(罗志刚,何菁菁,贺玖明,等.分析测试学报),2012,31(07):757.
[61]Luo Zhi-gang,He Jiu-ming,Chen Yi,Gong Tao,Wang Xiao-hao,Zhang Rui-ping,Huang Lan,Zhang Lian-feng,Lv Hai-ming,Ma Shuang-gang,Fu Zhao-di,Chen Xiao-guang,Yu Shi-shan,Abliz Zeper.Anal Chem,2013,85(5):2977.
[62]He Jing-jing,Luo Zhi-gang,Huang Lan,He Jiu-ming,Chen Yi,Rong Xian-fang,Jia Shao-bo,Tang Fei,Wang Xiao-hao,Zhang Rui-ping,Zhang Jian-jun,Shi Jian-gong,Abliz Zeper.Analytical Chemistry,2015,87(10):5372.
[63]Li Tie-gang,He Jiu-ming,Mao Xin-xin,Bi Ying,Luo Zhi-gang,Guo Chen-gan,Tang Fei,Xu Xin,Wang Xiao-hao,Wang Ming-rong,Chen Jie,Abliz Zeper.Scientific Reports,2015,5:14089.
Trends in Ambient Ion Source Mass Spectrometry
ZHANG Xiu-li, NING Lu-sheng, YU Jian-cheng*
(The Research Institute of Advanced Technologies,Ningbo University,Ningbo 315211)
Abstract:Ambient ion source has been widely used in rapid screening of samples,sample identification,mass-spectrometry imaging and other fields in recent years,because of its outstanding features including rapid,in situ,real-time ionization of sample.Consequently,it has attracted lots of attentions,especially in the areas of academia,instrument manufacturing,chemical and biological analysis,etc.Nowadays ambient ion source tends to strengthen the abilities of overcoming the matrix effects,improving positioning capacity of sample surface and increasing the ion transmission distances.This paper mainly introduces three kinds of representative ambient ion sources,i.e.electrospray extraction ionization(EESI),dielectric barrier discharge ion source(DBDI) and air flow assisted ionization(AFAI),emphasizing their principles,design improvements and application progresses.
Keywords:Ambient ion source;Mass spectrometry;Extractive electrospray;dielectric barrier discharge;Air flow assisted
摘 要:本文建立了悬浮固化分散液相微萃取(DLLME-SFO)高效液相色谱-串联质谱法(HPLC-MS/MS)测定环境水样品中壬基雌酚、双酚A、己烯雌酚、雌酮、雌二醇、炔雌醇6种雌激素的分析方法。萃取的最优条件为:以90 μL 1-十二醇为萃取剂,250 μL 0.025 mol/L Triton X-100为分散剂,调节pH至7.0,超声3 min,在室温条件下萃取环境水样中的雌激素残留。最优条件下,该方法在三个浓度水平下的平均加标回收率为93.4%~108.6%,相对标准偏差为1.3%~8.7%,检出限为0.001~0.05 μg/L。将该方法应用于环境水样中雌激素残留分析,获得了较好的回收率。
关键词:悬浮固化分散液相微萃取;高效液相色谱-串联质谱;雌激素;环境水样
中图分类号:O657.63 文献标识码:A 文章编号:10066144(2017)0227105
参考文献:
[1] ZHENG Ming-gang,WANG Ling,BI Yuan-dui,et al.Journal of Environmental Sciences,2011,23(4):693.
[2] ZENG Y Z,ZHANG Y,DONG Liang-fei,et al.Chinese Journal of Chromatography(曾玉珠,章勇,董良飞,等.色谱),2013,31(12):1176.
[3] SU Rui,WANG Xing-hua,XU Xu,et al.J Chromatogr A,2011,1218(31):5047.
[4] Saravanabhavan G,Helleur R,Hellou J.Chemosphere,2009,76(8):1156.
[5] XIAO Q W,WU W L,YANG W L,et al.Chinese Journal of Chromatography(肖全伟,吴文林,杨万林,等.色谱),2014,32(11):1209.
[6] ZHAO X,ZHANG Z E,ZHANG Lei,et al.Journal of Instrumental Analysis(赵昕,张占恩,张磊,等.分析测试学报),2015,34(1):56.
[7] LI Y,LIU J L,ZHANG C,et al.Chinese Journal of Analytical Chemistry(李鱼,刘建林,张琛,等.分析化学),2012,40(1):107.
[8] WANG Y H,JIN S G,WANG Q Y,et al.Journal of Analytical Science(王永花,金少格,王秋英,等.分析科学学报),2013,29(4):15.
[9] Martín J,Santos J L,Aparicio I,et al.Talanta,2015,143:335.
[10]Leong M I,Huang S D.J Chromatogr A,2008,1211(1):8.
[11]Dail,Cheng J,Matsadiq G,et al.Analytica Chimica Acta,2010,674(2):201.
[12]Suh J H,Lee Y Y,Lee H J,et al.Journal of Pharmaceutical and Biomedical Analysis,2013,75:214.
[13]DING Z Q,ZHANG Q Y.China Journal of Analytical Chemistry(丁宗庆,张琼瑶.分析化学),2010,38(10):1400.
[14]WANG Y,ZHU C H,ZOU X L,et al.Chinese Journal of Chromatography(王宇,朱成华,邹晓莉,等.色谱),2013,31(11):1076.
[15] 瘙 塁 ahin C A,Tokgz I.Analytica Chimica Acta,2010,667(1):83.
[16]ZHOU Qing-xiang,GAO Yuan-yuan,XIE Guo-hong.Talanta,2011,85(3):1598.
[17]Aufartová J,Mahugo-Santana C,Sosa-Ferrera Z,et al.Analytica Chimica Acta,2011,704(1-2):33.
Dispersive Liquid-Liquid Microextraction Based on
Solidification of Floating Organic Droplets Combined
with High Performance Liquid Chromatography-Tandem
Mass Spectrometry for Determination of Six Estrogens
in Environmental Water Samples
LI Jin1,2, ZHANG Li-jun1,2, DONG Nan-xun1,2, GAO Shi-qian1,2,
GU Hai-dong1,2, ZHANG Zhan-en*1,3
(1.School of Environmental Science and Engineering,Suzhou University of Science and
Technology,Suzhou 215009;
2.Jiangsu Key Laboratory for Environmental Science and Engineering,Suzhou University of
Science and Technology,Suzhou 215009;
3.Jiangsu Collaborative Center of Water Treatment Technology and Material,Suzhou 215009)
Abstract:A method for simultaneous determination of six estrogens(nonyl phenol,bisphenol A,diethylstilbestrol,estrone,estradiol,17α-ethinylestradio) in environmental water samples by dispersive liquid-liquid microextraction based on solidification of floating organic droplets combined with high performance liquid chromatography-tandem mass spectrometry was established.The optimal conditions were 90 μL of extractant(1-dodecanol),250 μL of dispersant(triton X-100,0.025 mol/L ),pH=7.0,and 3 min extraction.Experiments were carried out at room temperature.Under the optimum conditions,the samples were spiked at three concentration levels and the average recoveries of target compounds ranged from 93.4% to 108.6% with the RSDs from 1.3% to 8.7%.The limits of detection(LOD) of the method for the six target compounds were in the range of 0.001-0.05 μg/L.This new method was successfully applied for the analysis of the estrogens in environmental water sample with satisfying results.
Keywords:Dispersive liquid liquid microextraction based on solidification of floating organic;High performance liquid chromatography-tandem mass spectrometry;Estrogens;Environmental water samples
摘 要:建立了同时测定宠物食品中赭曲霉毒素A和B的液相色谱-串联质谱分析方法。样品经乙腈/水(1∶1,V/V)提取,HLB固相萃取柱净化。采用Agilent ZOBRAX C18柱(150×2.1 mm,5 μm)分离,以0.1%甲酸水溶液-乙腈作为流动相,梯度洗脱。目标化合物在多反应监测模式(MRM)下进行检测,外标法定量。在优化的条件下,赭曲霉毒素A和B在0.1 ~ 10.0 ng·mL-1范围内呈良好的线性关系,相关系数均不低于0.9993,方法定量限分别为0.1 μg·kg-1和0.05 μg·kg-1。方法平均回收率为78.3%~107.5%,相对标准偏差不大于9.5%。该方法前处理简单、选择性好、灵敏度高,可用于宠物食品中赭曲霉毒素A和B的测定。
关键词:宠物食品;赭曲霉毒素A;赭曲霉毒素B;液相色谱-串联质谱法
中图分类号:O657.63 文献标识码:A 文章编号:10066144(2017)0226704
参考文献:
[1] Rutigliano L,Valentini L,Martino N A,Pizzi F,Zanghì A,Dell’Aquila M E,Minervini F.Reprod Toxicol,2015,57:121.
[2] Vettorazzi A,Gonzlez-Peas E,de Cerain A L.Food Chem Toxicol,2014,72:273.
[3] ZHANG J B,WANG Y Z,CHEN D D,et al.Academic Periodical of Farm Products Processing(张继斌,汪咏曾,陈冬东,等.农产品加工(学刊)),2014,9:44.
[4] YAN L B,WANG H.Food Research and Development(阎龙宝,王浩.食品研究与开发),2010,31:136.
[5] LIANG G J,ZHANG Q,YANG B.China Brewing(梁桂娟,张琼,杨波.中国酿造),2015,34:136.
[6] LE Y,LIU C H,XU Z,et al.Chinese Journal of Tropical Agriculture(乐渊,刘春华,徐志,等.热带农业科学),2012,32:87.
[7] Zhu W Y,Ren C,Nie Y,Xu Y.Food Control,2016,64:37.
[8] HOU J B,XIE W,LI J,et al.China Brewing(侯建波,谢文,李杰,等.中国酿造),2014,33:146.
[9] Rodríguez-Cabo T,Rodríguez I,Ramil M,Cela R.Food Chem,2016,199:401.
[10]Jo E J,Mun H,Kim S J,Shim W B,Kim M G.Food Chem,2016,194:1102.
[11]Arduini F,Neagu D,Pagliarini V,et al.Talanta,2016,150:440.
[12]Mishra R K,Hayat A,Catanante G,Ocaa C,Marty J L.Anal Chim Acta,2015,889:106.
[13]Zou X Q,Chen C C,Huang X L,Chen X L,Wang L,Xiong Y H.Talanta,2016,146:394.
Determination of Ochratoxin A and Ochratoxin B in Pet Food
by Liquid Chromatograpy-Tandem Mass Spectrometry
CHENG Xiang-zhun, LI Zhou, HUANG Fu-zhen, ZHU Zhen-ou, LIU Bin,HAN Chao*
(Wenzhou Entry-Exit Inspection and Quarantine Bureau,Wenzhou 325027)
Abstract:A method of liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used for the simultaneous determination of Ochratoxin A and Ochratoxin B in pet food sample.Samples were extracted with acetonitrile/water(1∶1,V/V) and cleaned up with HLB solid phase extraction.A gradient elution program was applied with the mobile phase of 0.1% formic acid solution and acetonitrile.The analyte was determined in multiple reaction monitoring transitions(MRMs) mode and the quantification was performed by the external standard method.The results indicated that the calibration curves for Ochratoxin A and Ochratoxin B was linear in the range of 0.1-10.0 ng·mL-1,with correlation coefficients more than 0.9993,and the limits of quantification(LOQs) were 0.1 μg·kg-1 and 0.05 μg·kg-1.The average recoveries ranged from 78.3% to 107.5% with the RSDs less than 9.5%.This method is simple,good selectivity and sensitive,and is suitable for the determination of Ochratoxin A and Ochratoxin B in pet food.
Keywords:Pet food;Ochratoxin A;Ochratoxin B;Liquid chromatography-tandem mass spectrometry
摘 要:设计合成了四个含有氢蒽基团的新型有机硒化合物1,8-二-(2-苄硒基)丙氧基-9,10-二氢蒽(L1)、1,8-氧双(亚乙硒基丙氧基)-9,10-二氢蒽(L2)、1,8-二-(2-苄硒基)乙氧基-9,10-二氢蒽(L3)、1,8-氧双(亚乙硒基亚乙氧基)-9,10-二氢蒽(L4),利用1H NMR、13C NMR对化合物进行了结构表征,采用荧光光谱法测定了主体对客体阳离子的识别性能。研究结果发现只有化合物L1对Ag+具有选择识别能力,且对Ag+表现出“off-on”开关性能。化合物L2与Ag+和K+络合后荧光略有增强。
关键词:氢蒽;有机硒化合物;银离子识别
中图分类号:O657.39 文献标识码:A 文章编号:10066144(2017)0226304
参考文献:
[1] Maryon Edward B,Molloy Shannon A,Zimnicka Adriana M,et al.BioMetals,2007,20:355.
[2] Yang Yang,Xiaojun Gou,John Blecha,et al.Tetrahedron Letters,2010,51:3422.
[3] Zhaochao Xu,Su Jung Han,Chongmok Lee,et al.Chem Commun,2010,46(10),1679.
[4] Abalos T,Jimenez D,Moragues M,et al.Chem Soc,2004(8),126:2272.
[5] Balos T A,Jimenez,D,Moragues M.,et al.Dalton Trans,2010,39(14):3449.
[6] Nishimura G,Ishizumi K,Shiraishi Y,et al.J Phys Chem B,2006,110(43):21596.
[7] Ronghua Yang,Winghong Chan,Pingfang Xia,et al.J Am Chem Soc,2003,125(10):2884.
[8] Chatterjee A,Mithun Santra,Nayoun won,et al.J Am Chem Soc,2009,131(6):2040.
[9] XU Z X,LI H B,CHANG X L,et al.Journal of Analytical Science(许智祥,李海兵,常雪灵,等.分析科学学报),2007,23(04):453.
[10]Perez-Inestrosa E,Montenegro J,Daniel C R,et al.J Phys Chem C,2007,111(18),6904.
[11]Shanshan Huang,Song He,Yan Lu,et al.Chem Commun,2011,47(8):2408.
[12]De Silva A P,de Silva S A.Chem Soc Chem Comm,1986,23(23):1709.
[13]De Silva A P,Gunaratne H N,Gunnlaugsson Q T,et al.New J Chem,1996,20(7):871.
[14]Holliday B J,Ulmann P A,Mirkin C A.Organometallics,2004,23(8):1671.
[15]LI W P,LIU X F.Acta Chimica Sinica(李卫平,刘秀芳.化学学报),1994,52(11),1082.
[16]SHI Z W,LI Y,LU G Y.Chemical Journal of Chinese Universities(施证伟,李英,陆国元.高等学校化学学报),2005,26(4):4 667.
[17]Delmond S,Ltéard J F,Lapouyade R,et al.New J Chem,1996,20:861.
[18]Kolimannsberger M,Rurack K,Resch-Genger U,et al.J Phys Chem A,1998,102(50):10211.
[19]Baytekin H T,Akkaya E U.Org Lett,2000,2(12):1725.
Synthesis of Organic Selenium Compounds
for Ion Recognition
LUO Jie-wei1, MU Bo1, QIN Da-bin2, ZHAO Bo1,
ZHANG Si-lu1, SUN Sheng-fu2, ZHANG Bo*1
(1.Basic Medical of North Sichuan Medical College,Nanchong 637000;
2.College of Chemistry and Chemical Engineering,China West Normal University,Nanchong 637000)
Abstract:Four organic selenium compounds (1,8-bis-(2-benzylseleno)propoxy-9,10-bis-hydrogen anthracene)(L1),(1,8-oxy bis(ethyleneselenopropoxy)-9,10-bis-hydrogen anthracene)(L2),(1,8-bis-(2-benzyl seleno) ethoxy-9,10-bis-hydrogen anthracene)(L3) and (1,8-oxy bis(ethyleneselenoethoxy)-9,10-bis-hydrogen anthracene)(L4) containing hydrogen anthracene group were synthesied and characterized by 1H NMR,13C NMR spectrum,which were used to study the host-yuest recognition by using fluorescence spectroscopy.The results show that compound L1(1,8-bis-(2-benzylseleno)propoxy-9,10-bis-hydrogen anthracene) only showed selective recognition ability for silver ion,and exhibited “on-off” switching performance to silver.The fluorescence intensity was slightly enhanced when compound L2 complexed with silver ion and potassium ion respectively.
Keywords:Hydrogen anthracene;Organic selenium compounds;Silver ion recognition
参考文献:
[1] WANG X L,ZHANG P,CHEN Y.Applied Chemical Industry(王晓玲,张萍,陈燕.应用化工),2013,42(11):2088.
[2] GU L,ZHANG M,HE Y M.Physical Testing and Chemical Analysis Part B:Chemical Analysis(顾玲,张苗,贺亚梅.理化检验-化学分册),2013,49(4):420.
[3] ZHU Z T,XU J W,LEI Mei-kang,et al.Food Science(祝子铜,徐佳文,雷美康,等.食品科学),2014,35(20):258.
[4] DU J J,ZHOU M,LIU Y Y,et al.Chinese Journal of Analytical laboratory(杜俊俊,周敏,刘迎迎,等.分析试验室),2012,31(12):19.
[5] FU L J,CHEN R.Drug Standards of China(付丽娟,陈蓉.中国药品标准),2010,11(4):282.
[6] XU M J,CHEN T R,LI B.Chemical Journal of Chinese Universities(许苗军,陈天然,李斌.高等学校化学学报),2012,33(11):2368.
[7] LI R,YAN H T.Spectroscopy and Spectral Analysis(李蕊,阎宏涛.光谱学与光谱分析),2013,33(4):1104.
[8] LING C,GONG H,FAN L Z,et al.Acta Chimica Sinica(蔺超,宫贺,范楼珍,等.化学学报),2014,72(6),704.
[9] WANG Y X,MA H Y,ZHANG X L,et al.Journal of Analytical Science(王奕璇,马红燕,张向亮,等.分析科学学报),2015,31(2):253.
[10]WANG H,ZHANG P,WANG S.Metallurgical Analysis(王欢,张萍,王珊.冶金分析),2014,34(6):64.
Determination of Enoxacin Based on Fluorescence
Enhancing of Silver Nanoparticles
LI Man-xiu*, WANG Lei, DU Li-juan, HE Cai-hong
(Department of Chemistry,Xinzhou Teachers University,Xinzhou 034000)
Abstract:Silver nanoparticles were synthesized in aqueous solution with polyvinylpyrrolidone as stabilizer and sodium borohydride as reductant.Fluorescence and UV spectra were applied to demonstrate the interaction between silver nanoparticles and enoxacin.A new method was established for the determination of enoxacin based on the fluorescence enhancement of silver nanoparticles.Under optimal experimental condition,the relationship between relative fluorescence intensity F/F0 and the concentration of enoxacin was linear well,and the linear range was from 1.0×10-7 to 1.0×10-5 mol/L.The detection limit was 8.0×10-8 mol/L.The developed method was applied to real samples analysis and the recoveries were 94.5% to 99.8%.
Keywords:Polyvinyl silver nanoparticles;Enoxacin;Fluorescence enhancement
摘 要:将金纳米粒子(AuNPs)电沉积在N,P/石墨烯(N,P/Graphene)修饰的玻碳电极表面,研究了维生素B6(VB6)在该修饰电极上的电化学行为。实验结果表明:VB6在该修饰电极上出现一个良好的氧化峰,在最佳实验条件下,其氧化峰电流与VB6的浓度在2.0×10-5~4.0×10-4 mol /L 范围内呈线性关系,相关系数R=0.998,检出限为9.2×10-6 mol/L。一些常见的物质如K+、Na+、Zn2+、葡萄糖(Glu)不干扰VB6的检测。此方法已用于片剂中VB6含量的检测,获得较好结果。
关键词:维生素B6;金纳米粒子;N,P/石墨烯;电化学方法
中图分类号:O657.1 文献标识码:A 文章编号:10066144(2017)0225504
参考文献:
[1] LI S.Chinese Journal of Biochemical and Pharmaceutics(李莎.中国生化药物杂志),2010,31(3):176.
[2] Ham oM van der,Albersen M,de Koning T J,Visser G,Middendorp A,Bosma M,Verhoeven-Duif N M,de Sain-vander Velden M G M.Analytica Chimica Acta,2012,712(27):108.
[3] QI Z B,CHENG Z M,ZHU M J.Journal of Analytical Science(齐正保,程志民,朱蔓菁.分析科学学报),2009,25(3):325.
[4] Sun J F,Ren C L,Liu L H,Chen X G.Chininese Chemistry Letter,2008,19:855.
[5] WANG Y,BI C Y.Chemical Analysis and Meterage(王燕,毕春燕.化学分析计量),2012,21(5),43.
[6] MENG J,LI J H,WANG Y H,ZHANG Y Z.Chinese Journal of Analysis Laboratory(孟菁,李俊华,汪月红,张玉忠.分析试验室),2012,31(1):26.
[7] WU F H,CHENG L C,CHEN L,CAI Z Y.Journal of Analytical Science(吴芳辉,程立春,陈乐,蔡征宇.分析科学学报),2015,31(2):197.
[8] Wang Y,Zhang X,Li A,Li M.Chem Commun,2015,51(79),14801.
[9] Wang J,Zhang S J,Zhang Y Z.Anal Biochem,2010,396(2):304.
[10]Yamamoto M,Nakamoto M J.Mater Chem,2003,13:2064.
Electrochemical Behavior of Vitamin B6 at
a N,P/Grapene Modified Electrode
PANG Jian*1, WU Xiu-juan2, ZHU Xiao-hong3, CHENG Zheng4
(1.Tongling Politechnic,Tongling 244000;
2.College of Chemistry and Materials Science,Anhui Normal University,Wuhu 241000;
3.Hefei Normal University,Hefei 230000;
4.Tongling Food and Drug Inspection Center,Tongling 244000)
Abstract:Au nanoparticles were prepared on the N,P-codoped graphene modified glassy carbon electrode(GCE) by electrodeposition.The electrochemical behavior of Vitamin B6(VB6) was investigated at the as-prepared modified electrode.The results indicate that the electrochemical redox reaction could occur more easily at the modified electrode than the bare and graphene modified GCE.Under the optimum condition,the amperometric currents are linear with the concentration of VB6 in the range of 2.0×10-5-4.0×10-4 mol/L with a correlation coefficient(R) of 0.998.The detection limit is 9.2×10-6 mol/L at a signal-to-noise ratio of 3.The sensor shows good anti-interference performance for the coexistence such as K+,Na+,Zn2+ and glucose.The proposed method was used for determination of VB6 in the tablet with satisfactory results.
Keywords:Vitamin B6;Au nanoparticles;N,P-graphene;Electrochemical methods
摘 要:利用β-环糊精包合富集莱克多巴胺,采用紫外分光光度法对猪肉组织样品中莱克多巴胺的含量进行测定。实验得到最佳富集条件为:超声时间60 min,包合温度30℃,包合体系pH=7.0。结果表明:在1.5~3.0 mg/L范围内,吸光度变化值△A与莱克多巴胺质量浓度呈良好线性关系,相关系数r=0.9998,检出限为0.05 mg/L,日内(n=6)与日间(n=3)的相对标准偏差(RSD)分别为0.87%~1.07%与0.80%~1.28%,回收率为91.91%~102.30%。该方法操作简单、迅速、灵敏,结果可靠。
关键词:莱克多巴胺;紫外分光光度法;β-环糊精
中图分类号:O657.32 文献标识码:A 文章编号:10066144(2017)0225104
参考文献:
[1] Boler D D,Shreck A L,Faulkner D K,et al.Meat Science,2012,94(4):458.
[2] HUANG Y B.Agricultural Technology Service(黄义彬.农技服务),2011,28(1):67.
[3] Araujo T S,Jardim Porto L C,Mario E G,et al.Turkish Journal of Veterinary and Animal Science,2014,38(1):54.
[4] WANG W J,LI Y,YE Y F,JIANG H Y.China Animal Husbandry & Veterinary Medicine(王文珺,李阳,叶云峰,江海洋.中国畜牧兽医),2015,42(1):0140.
[5] SU L F,HE D T,XU F.Chinese Journal of Veterinary Medicine(苏丽芳,何丹婷,徐飞.中国兽医杂质),2014,50(5):59.
[6] XIONG L,LI W H,GAO Y Q,GUO T F,YANG X L.Journal of Food Safety and Quality(熊琳,李维红,高雅琴,杨晓玲,郭天芳.食品安全质量检测学报),2015,6(2):528.
[7] Carolina J,Constanza C,Muriel A.Bioorganic & Medicinal Chemistry,2010,18(14):5025.
[8] Blanca J,Munoz P,Morgado M.Analytica Chimica Acta,2005,529(1-2):199.
[9] JIN Y,JIANG L,LIU N,MENG X Y,LI C Y.Modern Instruments(金雁,姜莉,刘宁,孟祥勇,李成镛.现代仪器),2007,2:65.
[10]CHEN S P,FAN W,LIU M Y.Food Research and Development(陈四平,樊薇,刘梦云.食品研究与开发),2015,36(22):114.
[11]DAI J L.Science Technology and Engineering(代金玲.科学技术与工程),2011,11(28):6934.
[12]Sambasevam K P,Mohamad S,Sarih N M,Ismail N A.International Journal of Molecular Sciences,2013,14(2):3671.
Detection of Ractopamine in Meat by Ultraviolet
Spectrophotometry Combined with
β-Cyclodextrin Enrichment
JIN Hui, ZHAO Wei*, CHEN Tan-lin, ZHU Xue-qin
(College of Chemistry and Molecular Sciences,Wuhan University,Wuhan 430072)
Abstract:A new spectrophotometric method for the detection of ractopamine was established based on the formation of inclusion compound of β-cyclodextxin with ractopamine.The best conditions of the inclusion formation were as follows:ultrasonic time 60 min,inclusion temperature 30℃,pH=7.0.Under these conditions,the linear range for ractopamine was 1.5-3.0 mg/L with the correlation coefficient(r) of 0.9998,respectively.The limits of detection for ractopamine was 0.05 mg/L.The relative standard deviations(RSD) of ractopamine were 0.87%-1.07% and 0.80%-1.28% for intra-day and inter-day analysis,with the recovery of 91.91%-102.30%.The ultraviolet spectrophotometry is simple,rapid and reliable for detection.
Keywords:Ractopamine;Ultraviolet spectrophotometry;β-Cyclodextrin
摘 要:铂基催化剂因具有高催化活性、高稳定性而成为极其重要的能源转化催化剂。本文采用水热法合成氮掺杂石墨烯量子点支撑的钯纳米复合材料(Pd@N-GQDs),并将其用于碱性介质中甲醇的电催化氧化反应。实验结果表明,相比同类型材料钯负载于石墨烯纳米片(Pd@GS)、钯负载于石墨烯量子点(Pd@GQDs)和商业钯黑催化剂(Pd@C),Pd@N-GQDs纳米材料具有很高的催化活性和稳定性,并可减少催化剂材料中贵金属的使用量。
关键词:钯纳米;石墨烯量子点;甲醇电化学催化
中图分类号:O657.1 文献标识码:A 文章编号:10066144(2017)0224704
参考文献:
[1] Rao C N R,Sood A K,Subrahmanyam K S,Govindaraj A.Angew Chem Int Ed,2009,48(42):7752.
[2] Geim A K,Novoselov K S.Nature Materials,2007,6(3):183.
[3] Xu Chao,Wang Xin,Zhu Junwu.The Journal of Physical Chemistry C,2008,112(50):19841.
[4] Yoo E J,Okata T,Akita T,Kohyama M,Nakamura J.Nano Letters,2009,9(6):2255.
[5] Chen Xiaomei,Wu Genghuang,Chen Jinmei,Chen Xi,Xie Zhaoxiong,Wang Xiaoru.Journal of the American Chemical Society,2011,133(11):3693.
[6] Xi Jiangbo,Xie Chuyi,Zhang Yan,Wang Lu,Xiao Jian,Duan Xianming,Ren Jinghua,Xiao Fei,Wang Shuai.ACS Applied Materials & Interfaces,2016,8(34):22563.
[7] Zhivonitko V V,Skovpin I V,Crespo-Quesada M,Kiwi-Minsker L,Koptyug I V.The Journal of Physical Chemistry C,2016,120(9):4945.
[8] Yan Xin,Li Qiqi,Li Liangshi.Journal of the American Chemical Society,2012,134(39):16095.
[9] Lin Liping,Rong Mingcong,Luo Feng,Chen Dongmei,Wang Yiru,Chen Xi.TrAC Trends in Analytical Chemistry,2014,54:83.
[10]Xu Yuxi,Bai Hua,Lu Gewu,Li Chun,Shi Gaoquan.Journal of the American Chemical Society,2008,130(18):5856.
[11]Jin S H,Kim D H,Jun G H,Hong S H,Jeon S.Acs Nano,2013,7(2):1239.
[12]Peng Juan,Gao Wei,Gupta B K,Liu Zheng,Romero-Aburto R,Ge L H,Song Li,Alemany L B,Zhan Xiaobo,Gao Guanhui,Vithayathi S A,Kaipparettu B A,Marti A A,Hayashi T,Zhu Jun-Jie,Ajayan P M.Nano Letters,2012,12(2):844.
Study of Nitrogen-Doped Graphene Quantum Dots
Supported Palladuim Nanocomposites
GUO Yun-fang1, LI Zhong-ping*1, DU Li-qing1, LI Hung-wing2, DONG Chuan1
(1.Institute of Environmental Science,School of Chemistry and Chemical Engineering,
Shanxi University,Taiyuan 030006;
2.Department of Chemistry,Hong Kong Baptist University,Hong Kong)
Abstract:With high catalytic activity and high stability,Platinum-based nanomaterials become important energy conversion catalysts.Herein,we report a facile one-pot hydrothermal approach to prepare a novel nitrogen-doped graphene quantum dots(N-GQDs) supported palladuim nanocomposite.The Pd@N-GQDs nanocomposite demonstrates an excellent assembling nanostructures for the electrocatalytic oxidation of methanol in an alkaline medium when compared with the graphene sheets supported Pd nanocomposites(Pd@GS),graphene quantum dots supported Pd nanocomposites(Pd@GQDs) and commercial palladium catalyst(Pd@C).The Pd@N-GQDs nanocomposite offers a promising and attractive perspect by reducing the noble metal dosage in electronic materials which possess high catalytic activity and stability.
Keywords:Palladium nanoparticles;Graphene quantum dots;Methanol oxidation
摘 要:建立了超声萃取-高效液相色谱法(HPLC)同时测定人造革中7种苯并三唑类紫外线吸收剂UV-P、UV-326、UV-327、UV-329、UV-350、UV-320和UV-328含量的方法。该方法以甲醇为萃取溶剂,超声萃取人造革中的苯并三唑类紫外线吸收剂,萃取液经处理后直接进行HPLC分析,外标法定量。在信噪比(S/N)=3的条件下,UV-P、UV-326、UV-327、UV-329、UV-350的检出限均为0.05 mg/kg,UV-320、UV-328的检出限均为0.10 mg/kg。在3个不同加标浓度水平下,各组分的平均加标回收率为8819%~98.32%,相对标准偏差(RSD)为0.61%~3.74%。该方法简便快捷、灵敏度高,可用于人造革中苯并三唑类紫外线吸收剂的测定。采用该方法对市售人造革样品进行测定,结果在6个样品中检出了不同浓度水平的UV-P和UV-329。
关键词:人造革;超声萃取;高效液相色谱;苯并三唑类紫外线吸收剂
中图分类号:O657.7+2 文献标识码:A 文章编号:10066144(2017)0224205
参考文献:
[1] WAN Z X.Polyvinyl Chloride(万忠香.聚氯乙烯),2006,34(11):16.
[2] WAN Z X.Polyvinyl Chloride(万忠香.聚氯乙烯),2009,37(5):30.
[3] Kim J W,Chang K H,Isobe T,et al.J Toxic Sci,2011,36(2):247.
[4] Nakata H,Shinohara R I,Nakazawa Y,et al.Mar PollutBull,2012,64:2211.
[5] XUE J P.China Dyeing & Finishing(薛建平.印染),2013,39(6):42.
[6] WANG C Y,TANG L C,LIN J F,et al.China Dyeing & Finishing(王成云,唐莉纯,林君峰,等.印染),2016,42(1):40.
[7] XUE J P,CAI T,ZHAO L.Quality and Technical Supervision Research(薛建平,蔡涛,赵玲.质量技术监督研究),2014,(6):18.
[8] TIAN X X,ZHU Z,GUO H,et al.China Dyeing & Finishing(田欣欣,朱智甲,郭华,等.印染),2014,40(6):40.
[9] Nakata H,Shinohara R,Murata S,et al.J Environ Monitor,2010,12(11):2088.
[10]Nakata H,Murata S,Filatreau J.Environ Sci Technol,2009,43:6920.
[11]Zhang Zi-feng,Ren Nan-qi,Li Yi-fan,et al.Environ Sci Technol,2011,45(9):3909.
[12]Carpinteiro I,Abuin B,Rodriguez I,et al.Anal Bioanal Chem,2010,397:829.
[13]Carpinteiro I,Abuin B,Rodriguez I,et al.J Chromatogr A,2010,1217:3729.
[14]LU W J,WEN Z Y,ZHANG Y,et al.Plastics Science and Technology(鹿文军,温志英,张颖,等.塑料科技),2015,43(8):77.
Simultaneous Determination of Seven Benzotriazole Ultraviolet
Absorbers in Artificial Leathers by High-performance Liquid
Chromatography Coupled with Ultrasonic Extraction
XIE Tang-tang1, WANG Cheng-yun*1, LIN Jun-feng1, SHEN Ya-lei1,
ZHU Nai-qing1, ZHUANG Pei-jie2
(1.The Testing and Technology for Industrial Products,Shenzhen Entry-Exit Inspection and Quarantine
Bureau,Shenzhen 518067;2.Shenzhen Polytechnic,Shenzhen 518055)
Abstract:A high-performance liquid chromatographic method was established for the simultaneous determination of seven benzotriazole ultraviolet absorbers in artificial leathers.Benzotriazole ultraviolet absorbers in artificial leathers were ultrasonically extracted using methanol as the extraction solvent.The extract was then analyzed by high-performance liquid chromatography(HPLC) technique.The concentration of each analyte was calibrated by external standard method.At the condition of signal to noise(S/N) of three,the limits of detection were 0.05 mg/kg for UV-P,UV-326,UV-327,UV-329 and UV-350,0.10 mg/kg for UV-320 and UV-328,respectively.The recoveries changed from 88.19% to 9832% under three different spiked levels while the relative standard deviation varied from 0.61% to 374%.The proposed method was simple,rapid,sensitive,and applicable to the determination of benzotriazole ultraviolet absorbers in artificial leathers.The proposed method was applied in the determination of benzotriazole ultraviolet absorbers in artificial leathers available commercially.UV-P and UV-329 at different content levels were detected in six samples.
Keywords:Artificial leathers;Ultrasonic extraction;High-performance liquid chromatography;Benzotriazole ultraviolet absorbers
摘 要:采用多糖类手性色谱柱,建立了(2-戊基-3-苯基-2,3环氧丙烷基)二苯基磷酸酯对映体的高效液相色谱手性拆分方法。考察了手性柱类型、流动相组成、流速、柱温等对手性拆分的影响,并对分离机制进行了探讨。结果表明,采用Chiralpak AS-H柱(250×4.6 mm,i.d.,5 μm),以正己烷-异丙醇(85∶15,V/V)为流动相,在柱温25℃,流速10 mL/min,检测波长210 nm的条件下,(2-戊基-3-苯基-2,3环氧丙烷基)二苯基磷酸酯对映体能达到完全分离,且稳定性和重复性好。该方法也适用于(2-戊基-3-苯基-2,3环氧丙烷基)二苯基磷酸酯类似物的手性拆分。
关键词:(2-戊基-3-苯基-2,3环氧丙烷基)二苯基磷酸酯;多糖类手性色谱柱;手性拆分;高效液相色谱法
中图分类号:O657.7+2 文献标识码:A 文章编号:10066144(2017)0223705
参考文献:
[1] Vilotijevic I,Jamison T F.Cheminform,2010,8(3):763.
[2] SONG G W,ZHU J T,YAO G X,CHEN G.Chinese Journal of Applied Chemistry(宋光伟,朱锦桃,姚国新,陈刚.应用化学),2010,27(11):1286.
[3] Souza-Silva F,Bourguignon S C,Pereira B A,Crtes L M,de Oliveira L F,Henriques-Pons A,Finkelstein L C,Ferreira V F,Carneiro P F,de Pinho R T,Caffarena E R,Alves C R.Antimicrobial Agents & Chemotherapy,2015,59(4):1910.
[4] DU G X,PENG C Y,FANG D.Central South Pharmacy(杜国新,彭彩云,方渡.中南药学),2008,6(1):82.
[5] Ong V,Flanagan S,Fang E,Dreskin H J,Locke J B,Bartizal K,Prokocimer P.Drug Metabolism & Disposition the Biological Fate of Chemicals,2014,42(8):1275.
[6] LI L Z,SHI D Y,LIU J H,QIU L H.Journal of Qingdao Institute of Chemical Technology(李良智,史大永,刘均洪,邱龙辉.青岛科技大学学报(自然科学版)),2001,22(02):124.
[7] MOU Y,CHEN B Q,WEI S P,et al.Journal of Analytical Science(牟瑶,陈碧琼,韦思平,等.分析科学学报),2014,30(4):569.
[8] LIU Z X,YONG T P,LI Y S,et al.Chinese Journal of Clinical Pharmacy(刘子修,雍太萍,李燕思,等.中国临床药学杂志),2013,1:59.
[9] CHEN P,YU L,TIAN J,et al.Journal of Analytical Science(陈平,余录,田吉,等.分析科学学报),2016,4:549.
[10]CHENG B,XIE Y F,HU Y M,et al.Chinese Journal of Chromatography(成斌,谢一凡,胡优敏,等.色谱),2015,(6):6471.
[11]ZHOU Y,HUANG M,WANG Y,ZHANG Q M.Chinese Pharmaceutical Journal(周颖,黄敏,王琰,张启明.中国药学杂志),2012,47(13):1069.
Chiral Separation of (2-Pentyl-3-phenyl-2,3-epoxy propyl)
Diphenyl Phosphate Enantiomers by High Performance
Liquid Chromatogramphy
WANG Shu1, WEI Si-ping1, WANG Li1,CHEN Bi-qiong2,
ZHANG Chun1, WANG Qin1, DU Xi*2
(1.School of Pharmaceutical Science,Southwest Medical University,Luzhou 646000;
2.School of Basic Medical Science,Southwest Medical University,Luzhou 646000)
Abstract:A HPLC method was established for chiral separation and analysis of (2-pentyl-3-phenyl-2,3-epoxy propyl)diphenyl phosphate enantiomers using polysaccharide chiral chromatographic columns.The effect of columns,composition of mobile phase,flow rate and column temperature on the enantiomeric separation was investigated in detail and the separation mechanism was also discussed.The results showed that (2-pentyl-3-phenyl-2,3-epoxy propyl)diphenyl phosphate enantiomers could be baselinely separated with good repeatability and stability at 25℃ column temperature,with Chiarlpak AS-H cloum,mobile phase composition of n-hexane:isopropanol=85∶15(V/V),the flow rate of 1.0 mL/min and the detection wavelength at 210 nm.This method could be applied to separate and analyse (2-pentyl-3-phenyl-2,3-epoxy propyl)diphenyl phosphate enantiomers and its analogues.
Keywords:(2-Pentyl-3-phenyl-2,3-epoxy propyl)diphenyl phosphate;Polysaccharide chiral chromatographic column;Chiral separation;HPLC
摘 要:将超声分散的氧化石墨烯(GO)悬浮液滴涂于玻碳电极(GCE)表面,制备成GO/GCE,并用扫描电子显微镜(SEM)和电化学阻抗谱(EIS)对GO/GCE进行表征,利用差分脉冲伏安法(DPV)、循环伏安法(CV)对多巴胺(DA)和尿酸(UA)进行了电化学测定。研究了pH对DA和UA电化学行为的影响并计算相关的动力学参数。结果表明:该修饰电极对DA和UA的氧化还原反应具有良好的电化学催化作用,在1.0~98.0 μmol/L和0.5~90.0 μmol/L范围内峰电流与DA和UA浓度呈良好的线性关系,检出限分别为050 μmol/L和0.25 μmol/L。而且可以在抗坏血酸(AA)共存下同时测定DA和UA。该传感器具有良好的选择性与稳定性,有望应用于DA和UA的同时测定。
关键词:氧化石墨烯修饰电极;多巴胺;尿酸
中图分类号:O657.1 文献标识码:A 文章编号:10066144(2017)0223205
参考文献:
[1] Gonzlez-Diéguez N,Colina A,López-Palacios J,Heras A.Anal Chem,2012,60(13):9146.
[2] FAN J F,CUI Y,WANG Q H,YANG H.Journal of Analytical Science(范建凤,崔燕,王庆红,杨红.分析科学学报),2015,31(3):367.
[3] LIANG X L,WU F H),JIANG B B,et al.Journal of Analytical Science(梁秀丽,吴芳辉,江彬彬,等.分析科学学报),2016,32(1):32.
[4] YU X W,SHENG K X,CHEN J,et al.Acta Chimica Sinica(于小雯,盛凯旋,陈骥,等.化学学报),2014,72:319.
[5] Gao F,Cai X L,Wang X,Gao C,Liu S L,Gao F,Wang Q X.Sensors Actuators B:Chem,2013,186:380.
[6] Zhou M,Zhai Y M,Dong S.Jounal of Analytical Chemistry,2009,81:5603.
[7] Pandikumar A,How G T S,See T P,et al.Advances,2014,4:63296.
[8] Liu Y X,Dong X,Chen C P.Chem Soc Rev,2012,41:2283.
[9] Ye F Y,Feng C Q,Jiang J B,Han S.Electrochim Acta,2015,182:935.
[10]Kim Y R,Bong S,Kang Y J,et al.Biosens Bioelectro,2010,25:2366.
[11]Qi S P,Zhao B,Tang H Q,Jiang X Q.Electrochim Acta,2015,161:395.
[12]Zhang X,Zhang Y C,Ma L X.Sensors and Actuators B:Chemical,2016,227:488.
[13]LIU S Q,OUYANG G W,DAI G P,et al.Journal of Analytical Science(刘素芹,欧阳高伟,戴高鹏,等.分析科学学报),2014,30(6):853.
[14]LIU C,HE J X,GU N Y,et al.Chinese Journal of Analytical Chemistry(刘超,何建新,古宁宇,等.分析化学),2015,43(8):1175.
[15]TONG Y H,GUO X H,JIAO C L,et al.Journal of Heze College(同元辉,郭宪厚,焦翠玲,等.荷泽学院学报),2012,34(2):56.
[16]ZHANG Z X,WANG E K.Electrochemistry Principle and Method.Beijing:Science Press(张祖训,汪尔康.电化学原理和方法.北京:科学出版社),2000:564.
[17]Laviron E.J Electroanal Chem,1979,101:19.
Electrochemical Detection of Dopamine and Uric Acid
Based on Graphene Oxide Modified Glassy Carbon Electrode
WU Hai, ZHANG Lei, LI Jing-cao, SHEN He-ping, SONG Xue-yan,
WANG Meng-di, ZHANG Hong*
(School of Chemistry and Material Engineering,Anhui Provincial Key Laboratory for
Degradation and Monitoring of Pollution of the Environment,
Fuyang Normal College,Fuyang 236037)
Abstract:The graphene oxide(GO) modified glassy carbon electrode(GO/GCE) was prepared by casting sonicated graphene oxide dispersion on the surface of glassy carbon electrode(GCE),which was characterized by scan electron microscopy(SEM) and electrochemical impedance spectroscopy(EIS).Differential pulse voltammetry(DPV) and cyclic voltammetry(CV) were employed to detect dopamine(DA) and uric acid(UA).The effects of pH on the behaviors of DA and UA were studied and related kinetic parameter was calculated.Results indicated that the GO/GCE could catalyze the redox reaction of DA and UA.The DPV peak currents were liner with concentrations of DA and UA in the range of 1.0-98.0 μmol/L and 0.5-90.0 μmol/L,and the detection limits were 1.0 μmol/L and 0.25 μmol/L,respectively.Furthermore DA and UA can be simultaneously detected without interference of ascorbic acid(AA).The presented sensor has excellent selectivity and stability,which is expected to be applied to detect DA and UA in real samples.
Keywords:Graphene oxide modified electrode;Dopamine;Uric acid
摘 要:本文基于岩白菜素对鲁米诺-牛血清白蛋白体系化学发光信号显著的抑制作用,建立了快速灵敏测定岩白菜素的流动注射-化学发光分析新方法。实验发现,化学发光强度的降低值与岩白菜素质量浓度对数值呈良好的线性关系,方法的线性范围为3.0~5.0×105 pg/mL,检出限(3σ)为1.0 pg/mL。当溶液流速为2.0 mL/min时,完成一次分析过程仅需30 s,采样频率120/h。本法用于片剂、人血清和尿液中岩白菜素的含量测定,回收率为98.1%~102.7%,相对标准偏差小于2.0%(n=7)。同时对化学发光反应机理进行了探讨。
关键词:岩白菜素;化学发光;流动注射;鲁米诺;牛血清白蛋白
中图分类号:O657.39 文献标识码:A 文章编号:10066144(2017)0222705
参考文献:
[1] ZHANG W Z,SHI Y P,LIU X,JIANG S X.Journal of Analytical Science(张文珠,师彦平,刘霞,蒋生祥.分析科学学报),2003,19(6):525.
[2] Yang Y X,Yan J W,Yan F L,Yin Y Y,Zhuang F F.J Chem Res,2015,39(10):590.
[3] XIA C L,LIU G M,MA X K.Lishizhen Medicine and Materia Medica Research(夏从龙,刘光明,马晓匡.时珍国医国药),2006,17(3):432.
[4] ZHENG L M,QI X W,XING M Y.China Pharmacy(郑立明,漆新文,邢美业.中国药房),2002,13(7):398.
[5] LUO H B,ZHANG J,CHEN J H,et al.Chemical Research(罗红斌,张静,陈敬华,等.化学研究),2007,18(3):87.
[6] Zhu Y G,Zou L L,Dong Q,Jiang D R.Luminescence,2015,30(8):1269.
[7] CHEN J H,ZHANG J,ZHUANG Qian,et al.Chinese Journal of Analysis Laboratory(陈敬华,张静,庄茜,等.分析试验室),2008,27(3):30.
[8] KONG W T,PAN L Y,ZHAO B Y.China Pharmacist(孔文婷,潘丽玉,赵白云.中国药师),2004,17(12):2151.
[9] Singh D P,Srivastava S K,Govindarajan R,Rawat A K S.Acta Chromatogr,2007,19:246.
[10]ZHANG L H,FENG H L,XU L.China Pharmacist(张丽辉,冯海龙,徐玲.中国药师),2005,8(7):557.
[11]Wang J,Wang B J,Wei C M,Yuan G Y,Zhang R,Liu H,Zhang X M,Guo R C.Biomed Chromatogr,2009,23(2):199.
[12]Wang Z M,Song Z H,Chen D H.Talanta,2012,83(2):312.
[13]Sulkowska A.J Mol Struct,2002,614(1-3):227.
[14]Chinese Pharmacopoeia Commission.Pharmacopoeia of The People’s Republic of China(Volume I).Beijing:China Medical Science Press(国家药典委员会.中华人民共和国药典(一部).北京:中国医药科技出版社),2015:408.
Determination of Bergenin by Flow Injection Analysis Coupled
with Inhibited Chemiluminescence System
ZHANG Yun*, GAO Su-ya, HU Ben-quan
(School of Pharmacy, Xi’an Medical University, Xi’an 710021)
Abstract:A rapid and sensitive flow injection-chemiluminescence(FI-CL) method for the determination of bergenin was established,based on the inhibition effect of bergenin on luminol-bull serum albumin system.It was found that the decrement of CL intensity was linearly proportional to the logarithm of bergenin concentration ranging from 3.0 to 5.0×105 pg/mL,with the limit of detection of 1.0 pg/mL(3σ).At the flow rate of 2.0 mL/min,a typical analytical procedure including sampling and washing was finished within 30 s,which offered sample efficiency of 120/h.The proposed method has been applied to the determination of bergenin in tablets,human serum and urine samples with the recoveries of 98.1%-102.7%,and the RSDs of less than 2.0%(n=7).The possible mechanism of the CL reaction was also proposed.
Keywords:Bergenin;Chemiluminescence;Flow injection;Luminol;Bovine serum albumin
摘 要:本文建立了铁皮石斛、浙贝母和人参三种中药材中嘧菌酯的残留检测方法。样品采用乙腈提取,二氯甲烷液-液萃取,弗罗里硅土-中性氧化铝-活性炭柱层析净化,乙酸乙酯定容,气相色谱-电子捕获检测器(GC-ECD)检测,基质外标法定量。结果表明:在0.01~1.0 mg/L范围内,不同基质中嘧菌酯的峰面积与其质量浓度间呈良好线性关系,相关系数均大于0.999;在0.01、0.1和0.5 mg/kg的添加水平下,嘧菌酯在3种中药材基质中的平均回收率为85.0%~94.9%,日内相对标准偏差(RSD)均小于52%(n=5),日间RSD均小于6.7%(n=15);其在铁皮石斛、浙贝母和人参基质中的检出限(LOD)为0.002~0.004 mg/kg,定量限(LOQ)均为0.01 mg/kg。方法的准确度和精密度均满足残留分析要求,适用于铁皮石斛、浙贝母和人参中嘧菌酯的检测。
关键词:嘧菌酯;中药材;气相色谱;残留
中图分类号:O657.7+1 文献标识码:A 文章编号:10066144(2017)0222205
参考文献:
[1] LIU C L,GUAN A Y,ZHANG M X.World Pesticides(刘长令,关爱莹,张明星.世界农药),2002,24(1):46.
[2] SUN T S,SHEN Z X.Guangdong Chemical Industry(孙天山,沈志洵.广东化工),2013,40(2):60.
[3] National Pharmacopoeia Committee.Pharmacopoeia of People’s Republic of China.Part 1.Beijing:China Medical Science Press(国家药典委员会.中华人民共和国药典.一部.北京:中国医药科技出版社),2015:8,282,292.
[4] YAO X M,SHI D,HE C L,ZHENG Y L.Journal of Zhejiang Agricultural Science(姚晓明,施德,何春龙,郑永利.浙江农业科学),2014,(12):1785.
[5] YANG Z H,WEI C J,JIA L F,et al.Journal Agro-Environment Science(杨振华,魏朝俊,贾临芳,等.农业环境科学学报),2013,32(4):697.
[6] Huan Z B,Zhi X,Lv D Z,Xie D F,Luo J H.Bulletin of Environment Contamination and Toxicology,2013,91:734.
[7] Abdelraheem E M H,Hassan S M,Arief M M H,Mohammad S G.Food Chemistry,2015,182(182):246.
[8] BO H B.Chinese Journal of Chromatograph(薄海波.色谱),2007,25(6):898.
[9] GAO Y,XU Y M,QIN X,SUN Y.Environment Chemistry(高阳,徐应明,秦旭,孙杨.环境化学),2014,33(3):464.
[10]Itoiz E S,Fantke P,Juraske R,Kounina A,Vallejo A A.Chemosphere,2012,89(9):1034.
[11]WANG S W,HOU Z G,ZOU J,LU Z B.Agrochemicals(王思威,候志广,邹静,逯忠斌.农药),2010,49(6):436.
[12]WU J L,WANG H C,WU X T,et al.Chinese Journal of Pesticide Science(吴加伦,王怀昌,武秀停,等.农药学学报),2012,14(1):67.
[13]Poole C F.Journal of Chromatography A,2007,1158(1-2):241.
[14]Zhu Y L,Liu X G,XU J,Dong F S,Liang X Y,Li M M,Duan L F,Zheng Y Q.Journal of Chromatography A,2013,1299:71.
[15]NY/T 788-2004.Guideline on Pesticide Residue Trials(农药残留试验准则).
Determination of Azoxystrobin Residues in Dendrobium
officinale,Fritiliariae thunbergii and
Panax ginseng by Gas Chromatography
FAN Li-li, WANG Juan, WU Jia-lun*
(Ministry of Agriculture Key Laboratory of Molecular Biology of Group Pathogens and Insects,
Institute of Pesticide and Environment Toxicology,Zhejiang University,Hangzhou 310058)
Abstract:A method for determination of azoxystrobin residues in Dendrobium officinale,Fritiliariae thunbergii and Panax ginseng was established.Samples were extracted ultrasonically with acetonitrile,partioned by dichloromethane,and then cleaned up by column chromatography (florisil-neutral alumina-activated charcoal).The sample extracts were determined by GC-ECD with matrix-matched external standard method.The results indicated that the matrix-matched calibration curves showed good linearity in the concentration range of 0.01-1 mg/L with correlation coefficients higher than 0.999.The average recoveries of azoxystrobin in the three matrices were between 85.0% and 94.9% at the spiked levels of 0.01,0.1 and 0.5 mg/kg,with intra-day relative standard deviations lower than 5.2%(n=5) and inter-day relative standard deviations lower than 6.7%(n=15).The limits of detection (LOD) in Dendrobium officinale,Fritiliariae thunbergii and Panax ginseng were 0.002-0.004 mg/kg,the limits of quantification (LOQ) were 0.01 mg/kg.The method was easy,efficient,sensitive and accurate,which can be suitable for determination of azoxystrobin residues.
Keywords:Azoxystrobin;Chinese traditional herbal medicine;Gas chromatography;Residue
摘 要:建立了一种高效、快速的毛细管电泳分离-激光诱导荧光(CE-LIF)检测卡托普利(CAP)和N-乙酰-L-半胱氨酸(NAC)的分析方法。采用1,3,5,7-四甲基-8-溴甲基-二氟二硼-二吡咯甲川(TMMB-Br)为柱前衍生试剂,在50 mmol/L磷酸盐缓冲溶液(pH=8.5)中,40℃下进行衍生反应10 min。以荧光素为内标,25 mmol/L硼酸盐缓冲溶液(pH=9.5)为电泳背景电解质,14 min内达到基线分离。CAP和NAC的检出限分别为0.65 nmol/L、0.76 nmol/L。将该方法应用于人体尿液和血清中这两种物质的测定,回收率在97.0%~105.7%之间。
关键词:毛细管电泳分离-激光诱导荧光检测法;卡托普利;N-乙酰-L-半胱氨酸;衍生
中图分类号:O657.8 文献标识码:A 文章编号:10066144(2017)0221705
参考文献:
[1] EI-Didamony A M,Erfan E A H.Journal of the Chilean Chemical Society,2011,56(4):875.
[2] Raghu G,Anstrom K J,King T E.New England Journal of Medicine,2012,366(21):1968.
[3] Dodd S,Dean O,Copolov D L.Expert Opinion on Biological Therapy,2008,8(12):1955.
[4] Jaworska M,Szulińska Z,Wilk M,et al.Acta Chromatographica,2011,23(4):595.
[5] Chik Z,Mustafa A M,Mohamed Z,Lee T C.Current Analytical Chemistry,2010,6(6):329.
[6] Iqbal F M,Ahmad M,Zubair M M.Latin American Journal of Pharmacy,2015,34(5):875.
[7] SUN Y H,ZHANG Z J,ZHANG X F.Spectrochimica Acta A-molecular and Biomolecular Spectroscopy,2013,105C(6):171.
[8] Suarez W T,Pessoa-Neto O D,Janegitz B C,et al.Analytical Letters,2011,44(14):2394.
[9] Hayashi K,Miyamoto M,Sekine Y.Journal of Chromatography B:Biomedical Sciences and Applications,1985,338(338):161.
[10]GAO S,TIAN W R,WANG S X.Journal of Chromatography B:Biomedical Sciences and Applications,1992,582(1):258.
[11]Sypniewski S,Bald E.Journal of Chromatography A,1996,729(1):335.
[12]Kumierek K,Bald E.Chromatographia,2008,67(1-2):23.
[13]Bald E,Glowacki R.Amino Acids,2005,28(4):431.
[14]GUO X F,ZHU H,WANG H,et al.Journal of Separation Science,2013,36(4):658.
[15]Aykin N,Neal R,Yusof M,et al.Biomedical Chromatography,2001,15(7):427.
[16]Pérez-Ruiz T,Martínez-Lozano C,Galera R.Electrophoresis,2006,27(12):2310.
[17]WANG H,LIANG S C,ZHANG Z M,et al.Analytica Chimica Acta,2004,512(2):281.
[18]HUANG K J,HAN C H,SUN J Y,et al.Chromatographia,2010,72(11-12):1049.
[19]GUO X F,WANG H,GUO Y H,et al.Journal of Chroma Chromatography Tography A,2009,1216(18):3874.
[20]GUO X F,ZHANG H X,MA L N,et al.Journal of Separation Science,2012,35(20):2756.
Determination of Captopril and N-Acetylcysteine by Capillary
Electrophoresis-laser Induced Fluorescence Detection
CAO Li-wei*, SHI Yi-hui, WEI Tian, TAN Xiao-fang, MENG Jian-xin
(Department of Chemistry,College of Chemistry and Material Science,Jinan University,Guangzhou 510632)
Abstract:A highly efficient and fast analysis method was developed for the determination of captopril(CAP) and N-acetylcysteine(NAC) by capillary electrophoresis with laser-induced fluorescence detection(CE-LIF).1,3,5,7-tetramethyl-8-bromomethyl-difluoroboradiaza-s-indacene(TMMB-Br) was used for pre-column derivatization.Fluorescein was used as an internal standard(I.S.).The optimum derivative reaction was conducted in 50 mmol/L phosphate buffer solution(pH=8.5) at 40℃ for 10 min.At room temperature,derivatives of captopril and N-acetylcysteine were baseline separated within 14 min using 25 mmol/L boric acid solution(pH=9.5) as the running buffer.The detection limits(S/N=3) of the thiol derivatives were 0.65 nmol/L and 0.76 nmol/L,respectively.The proposed method was tested by analyzing the drugs in human plasma and urine samples with recoveries of 97.0%-105.7%.
Keywords:Capillary electrophoresis-laser induced fluorescence(CE-LIF);Captopril;N-Acetylcysteine;Derivatization
摘 要:研究土壤中持久性有机污染物的含量可以为区域环境治理和来源解析提供基础数据。本文通过固相萃取结合气相色谱-串联质谱法建立了16种多环芳烃和15种多氯联苯的检测方法,并优化了固相萃取净化方法、色谱条件以及质谱碰撞能量。结果表明16种多环芳烃和15种多氯联苯的标准曲线线性关系良好,方法线性相关系数r2>0.999,方法的检出限为0.1~2.5 μg·kg-1,16种多环芳烃的平均加标回收率范围为62.5%~113.5%,相对标准偏差在2.3%~8.2%之间,15种多氯联苯的平均加标回收率范围为62.6%~91.4%,相对标准偏差在5.2%~7.8%之间。方法的准确度和精密度较高,通过对实际样品的测定,说明该方法具有较低的检出限及较强的抗干扰能力,能满足土壤中多环芳烃和多氯联苯的检测要求。
关键词:土壤;多环芳烃;多氯联苯;串联质谱
中图分类号:O657.63 文献标识码:A 文章编号:10066144(2017)0221205
参考文献:
[1] Zhang W,Zhang S C,Wan C,Yue D P,Ye Y B,Wang X J.Environmental Pollution,2008,153(3):594.
[2] Liu Y,Chen L,Zhao J F,Huang Q H,Zhu Z L,Gao H W.Environmental Pollution,2008,154(2):298.
[3] Chen J W,Xue X Y,Schramm K W,Quan X,Yang F L,Kettrup A.Chemosphere,2002,48(5):535.
[4] Prince M M,Ruder A M,Hein M J,Waters M A,Whelan E A,Nilsen N,Ward E M,Schnorr T M,Laber P A,Davis-King K E.Environmental Health Perspectives,2006,114(10):1508.
[5] Porta M,Puigdomenech E,Ballester F,Selva J,Ribas-Fito N,Dominguez-Boadao L,Martin-Olmedo P,Olea N,Llop S,Fernandez M.Gaceta Sanitaria,2008,22(3):248.
[6] HE X L,XU T T,ZHANG Y Y,et al.Rock and Mineral Analysis(贺行良,徐婷婷,张媛媛,等.岩矿测试),2010,29(6):757.
[7] ZHANG X L,LIU Y,MA L,et al.Journal of Analytical Science(张旭龙,刘银,马玲,等.分析科学学报),2013,29(6):763.
[8] Tian F L,Chen J W,Qiao X L,Wang Z,Yang P,Wang D G,Ge L K.Atmospheric Environment,2009,43:2747.
[9] Bzdusek P A,Christensen E R,Li A,Zou Q.Environmental Science & Technology,2004,38(1):97.
[10]Wang D G,Tian F L,Yang M,Liu C,Li Y F.Environmental Pollution,2009,157(5):1559.
[11]AI L F,LI W,WANG J,et al.Journal of Instrumental Analysis(艾连峰,李玮,王敬,等.分析测试学报),2015,34(5):570.
[12]WANG Z Z,XU H Y,WANG W,et al.Journal of Analytical Science(王珍珍,许惠英,王维,等.分析科学学报),2014,30(1):44.
[13] Zuo Q,Duan Y H,Yang Y,Wang X J,Tao S.Environmental Pollution,2007,147(2):303.
[14]CHEN F Q,ZENG Q C,SONG C M,et al.Journal of Analytical Science(陈飞钦,曾千春,宋春满,等.分析科学学报),2011,27(1):35.
[15]XU T,TANG H,CHEN D Z,et al.Journal of Chinese Mass Spectrometry Society(许婷,汤桦,陈大舟,等.质谱学报),2015,36(2):120.
Determination of Polycyclic Aromatic Hydrocarbons and
Polychlorinated Biphenyls in Soils by Gas Chromatography-Triple
Quadrupole Mass Spectrometry
TIAN Fu-lin*, LIU Cheng-yan, WANG Zhi-jia, ZHAO Hai-bo
(Liaoning Key Laboratory of Analysis and Testing Techniques,Liaoning Academy
of Analytical Science,Shenyang 110015)
Abstract:A method for the determination of 16 polycyclic aromatic hydrocarbons(PAHs) and 15 polychlorinated biphenyls(PCBs) was developed by gas chromatography-triple quadrupole mass spectrometry with ultrasonic extraction.In this study,the pre-treatment method,chromatographic conditions and mass spectrometry conditions were optimised. The results showed that the correlation coefficients of PAHs and PCBs in soils were larger than 0.999,and the limit of detection ranged from 01 to 2.5 μg·kg-1.The average recoveries of PAHs were 62.5%-113.5%,and 62.6%-91.4% for PCBs.The relative standard deviations ranged from 2.3% to 8.2% for PAHs,and 5.2%-7.8% for PCBs.The method has low detection limits and strong anti-interference ability for complex matrix and can be used for determination of PAHs and PCBs in soils.
Keywords:Soil;Polycyclic aromatic hydrocarbons;Polychlorinated biphenyls;Triple quadrupole mass spectrometry
摘 要:本文在聚乙烯吡咯烷酮(PVP)保护下制得银纳米粒子(AgNPs),当在pH为8.69的B-R缓冲溶液条件下,向AgNPs溶液中加入三聚氰胺后,AgNPs在392 nm波长处的吸光度降低,并在长波处出现新的吸收峰,且AgNPs在392 nm处的吸光度降低值(△A)与三聚氰胺的浓度呈现良好的线性关系。基于此,建立了一种灵敏检测三聚氰胺的方法,线性范围为5.0×10-8~2.0×10-6 mol/L(相关系数r=0.9951)。三聚氰胺的浓度在0.1×10-6~2.0×10-6 mol/L范围,AgNPs溶液的颜色变化可以直接用肉眼分辨,由此可以建立一种三聚氰胺的可视化半定量检测方法。建立的方法能用于合成样品和牛奶中三聚氰胺含量的检测。
关键词:银纳米粒子;吸光度;三聚氰胺
中图分类号:O657.32 文献标识码:A 文章编号:10066144(2017)0220705
参考文献:
[1] Chan E Y,Griffiths S M,Chan C W.Lancet,2008,372:1444.
[2] Venkatasami G,Sowa J R.Analytical Chimica Acta,2010,665(2):227.
[3] Yokley R A,Mayer L C,Rezaaiyan R.Journal of Agricltural & Food Chemistry,2000,48(8):3352.
[4] Cao Q,Zhao H,Zeng L X.Talanta,2009,80(2):484.
[5] LIU W X,LUO Y,YANG W C,et al.Journal of Analytical Science(刘卫霞,罗勇,杨维成,等.分析科学学报),2011,27(2):219.
[6] Liu J W,Lu Y.Analytical Chemistry,2004,76(6):1627.
[7] He S J,Li D,Zhu C F.Chemical Communications,2008,40:4885.
[10]Chi H,Liu B H,Guan G J.Analyst,2010,135:1070.
[11]Rosi N L,Mirkin C A.Chemical Reviews,2005,105(4):1547.
[12]Yin Y,Li Z Y,Zhong Z Y.Journal of Materials Chemistry,2002,12:522.
[13]Xiong D J,Chen M L,Li H B.Chemical Communications,2008,7:880.
[14]Chen Y,Aveyard J,Wilson R.Chemical Communications,2004,24:2804.
[15]Riskin M,Tel-Vered R,Lioubashevski O.Journal of the American Chemical Society,2009,131(21):7368.
[16]Zeng Y,Zhang G X,Zhang D Q.Analytical Chimica Acta,2008,627(2):254.
[17]Han C P,Li H B.Analyst,2010,135(3):583.
[18]Sun Y G,Mayers B,Xia Y N.Nano Letters,2003,3(5):675.
Visualized Detection of Melamine by Polyvinylpyrrolidone
Protected Silver Nanoparticles
TANG Jian, CHEN Shu, LI Chun-juan, LONG Yun-fei*
(School of Chemistry and Chemical Engineering,Key Laboratory of Theoretical
Organic Chemistry and Function Molecule,Ministry of Education,Hunan University
of Science and Technology,Xiangtan 411201)
Abstract:Silver nanoparticles(AgNPs) were prepared under the protection of polyvinylpyrrolidone(PVP).When melamine was added to the AgNPs solution,the aggregation of AgNPs leads to the reduction of the absorbance of the AgNPs solution at the maximum absorption peak of 392 nm,and the absorption peak was red shifted with the change of the melamine concentration.Based on these phenomena,a sensitive method for detection of melamine was established.Melamine could be selectively detected in the range of 5.0×10-8-2.0×10-6 mol/L.The linear equation for melamine detection is △A=0.01574+0.2266c,and the correlation coefficient is 0.9951.Furthermore,a visualized method for melamine detection was established in the range of 0.1×10-6-2.0×10-6 mol/L,which could be applied in the detection of melamine in synthetic and milk samples.
Keywords:Silver nanoparticles;Absorbance;Melamine
摘 要:建立了固相萃取-高效液相色谱法同时测定植物根际促生菌发酵产物中吲哚-3-乙酸、赤霉素和玉米素3种植物激素含量的方法。固相萃取采用Agilent Bond Elut C18固相萃取柱,6 mL甲醇+6 mL 10%甲醇活化;以5 mL 10%甲醇淋洗2次;以5 mL 80%甲醇洗脱2次。采用Agilent ZORBAX Eclipse Plus C18色谱柱(250×4.6 mm,5 μm)分离,流动相采用体积比为2∶3的甲醇-水(含0.2%冰乙酸)二元混合溶剂,流速为1 mL·min-1,柱温为30℃,进样量为20 μL,检测波长为210 nm。结果表明:10株供试菌株发酵产物中均能检测到3种植物激素,除菌株003NXZ4外,其余菌株均呈现出玉米素含量最高,赤霉素次之,吲哚-3-乙酸含量最低的趋势。3种植物激素在12 min内分离完全,样品的加标回收率达90.3%~104.3%,相对标准偏差(n=6)在1.04%~298%之间。该方法简便、准确,可同时检测植物根际促生菌发酵产物中吲哚-3-乙酸、赤霉素和玉米素3种植物激素含量。
关键词:固相萃取;高效液相色谱法;植物根际促生菌;植物激素;吲哚-3-乙酸;赤霉素;玉米素
中图分类号:O657.7+2 文献标识码:A 文章编号:10066144(2017)0220106
参考文献:
[1] Davies P J.Plant Hormones:Physiology,Biochemistry and Molecular Biology.New York:Kluwer Academic Publishers,1995.
[2] LIAN C F,JIANG J Z,LI S Z,et al.Acta Agriculturae Boreali-Sinica(连翠飞,蒋继志,李社增,等.华北农学报),2006,21(2):66.
[3] ZHANG Y,ZHU Y,YAO T,et al.Acta Prataculturae Sinica(张英,朱颖,姚拓,等.草业学报),2013,22(1):29.
[4] Aslantas R,Cakmakci R,Sahin F.Scientia Horticulturae,2007,111(4):371.
[5] Bardas G A,Lagopodi A L,Kadoglidou K,Tzavella-Klonari K.Biological Control,2009,49:139.
[6] Esitken A,Yildiz H E,Ercisli S,Donmez M F,Turan M,Gunes A.Scientia Horticculturae,2010,124:62.
[7] Liu H,Wu X Q,Ren J H,Jian-Ren Y E.Pedosphere,2011,21(1):90.
[8] ZHANG Y,CHENG X,WANG Q L,et al.Shandong Agricultural Sciences(张义,程晓,王全龙,等.山东农业科学),2015,47(8):53.
[9] ZHANG S M,WANG G H,LI C Y,PENG J J.Journal of Yunnan Agricultural University(张世梅,王根华,李成云,彭杰军.云南农业大学学报),2015,30(4):499.
[10]FU F E,LIU G H,XIONG J,et al.Journal of Yunnan University of Nationalities(付飞蛾,刘光辉,熊杰,等.云南民族大学学报),2013,22(3):162.
[11]ZHANG Y W,WAN Y P,YAN B,HU H S.Chinese Journal of Health Laboratory Technology(张云伟,万勇平,鄢兵,胡海山.中国卫生检验杂志),2015,25(14):2277.
[12]Hou S J,Zhu J,Ding M Y,Lv G H.Talanta,2008,76(4):798.
[13]Tarkowski P,Václavíková K,Novk O,Pertry I,Hanu J,Whenham R,Vereecke D,ebela M,Strnad M.Analytica Chimica Acta,2010,680:86.
[14]WANG S L,WANG P,WANG C Y.Juornal of Analytical Science(王水良,王平,王趁义.分析科学学报),2010,26(5):547.
[15]ZHANG Y Q,ZHONG Y L,GAO C Y,et al.Chinese Journal of Chromatography(张玉琼,仲延龙,高翠云,等.色谱),2013,31(8):800.
[16]Fu J H,Sun X H,Wang J D,Chu J F,Yan C Y.Chinese Science Bulletin,2011,56(4):355.
Determination of Plant Hormones in Bacterial Fermentation
Products of Plant Growth Promoting Rhizobacteria by
Solid Phase Extraction-High Performance
Liquid Chromatography
LIU Ting, YAO Tuo*, CHEN Jian-gang, LIU Huan
(College of Pratacultural Science,Gansu Agricultural University/Key Laboratory of Grassland
Ecosystem/Ministry of Education,Pratacultural Engineering Laboratory of Gansu
Province/Sino-U.S.Center for Grazingland Ecosystem Sustainability,Lanzhou 730070)
Abstract:A method of solid phase extraction-high performance liquid chromatography(SPE-HPLC) was established for the simultaneous determination of plant hormones.The purification was processed by a Agilent Bond Elut C18 solid phase extraction column.The separation was carried on Agilent ZORBAX Eclipse Plus C18 column(250×4.6 mm,5 μm) under the detection wavelength of 210 nm.40% methanol and 60% ultrapure water(containing 0.2% acetic acid) mixture was used as the mobile phase at a flow rate of 1.0 mL·min-1.The column temperature of 30℃ and the injection volume of 20 μL were adopted.The results shows that:3 kinds of plant hormones has been found in each sample.Except 003NXZ4,the maximum content of plant hormones was trans-Zeatin.The second was gibberellin acid and the least was indole-3-acetic acid.The 3 plant hormones were completely separated in 12 min.The average recovery of this method were 90.3%-104.3%,with a relative standard deviation of 1.04%-2.98%.This method is simple and accurate,and can be used for the determination of plant hormones in bacterial fermentation products of plant growth promoting rhizobacteria.
Keywords:Solid phase extraction;High performance liquid chromatography;Plant growth promoting rhizobacteria;Plant hormones;Indoleacetic-3-acid;Gibberellin acid;trans-Zeatin
摘 要:建立了间接竞争酶联免疫吸附法检测食品中细交链格孢酮酸(Tenuazonic Acid,TA)残留,并研制快速检测试剂盒。采用肟化法对TA进行衍生化,活泼酯法偶联半抗原和载体蛋白得到人工抗原TAO-BSA和TAO-KLH,以TAO-KLH作为免疫原免疫雌性Balb/c小鼠制备特异性抗体。对包被浓度、包被时间、封闭液类型、抗体工作浓度、二抗稀释度、底物显色时间等参数进行研究,建立了TA残留间接竞争酶联免疫检测方法并进行了配套试剂盒的研制。该试剂盒半抑制浓度Ic50为1.48 ng/mL,检测线性范围为0.06~35.95 ng/mL(R2=0.9941);检测限为0.02 ng/mL;加标样品平均回收率大于88.50%;试剂盒的批间和批内平均变异系数分别为2.84%和949%,与食品中常见真菌毒素交叉反应率均小于1%。
关键词:细交链孢菌酮酸;人工抗原;多抗血清;酶联免疫法
中图分类号:Q503 文献标识码:A 文章编号:10066144(2017)0219506
参考文献:
[1] Barkai G R,Paster N.World Mycotoxin Journal,2008,1(2):147.
[2] Pavón Moreno M A,González Alonso I,Martín de Santos R,García Lacarra T.Nutricion Hosptalaria,2012,27(6):1772.
[3] Lou J F,Fu L Y,Peng Y L,Zhou L G.Molecules,2013,18(5):5891.
[4] Ostry V.World Mycotoxin Journal,2008,1(2):175.
[5] Asam S,Rychlik M.European Food Research and Technology,2013,236(3):491.
[6] WU C S,MA L,JIANG T,et al.Food Science(吴春生,马良,江涛,等.食品科学),2014,35(19):295.
[7] Schwarz C,Tissen C,Kreutzer M,Stark T,Homfmann T,Marko D.Archives of Toxicology,2012,86(12):1911.
[8] HU Y Y,MA L,ZHANG Y H.Science and Technology of Industry(胡媛媛,马良,张宇昊.食品工业科技),2013,34(24):385.
[9] JIANG T,HU Y Y,MA L.Food Science(江涛,胡媛媛,马良.食品科学),2014,35(9):153.
[10]Asam S,Lichtenegger M,Muzik K,Liu L,Frank O,Hofmann T,Rychlik M.Journal of Chromatography A,2013,1289:27.
[11]Pavón M ,Luna A,de la Cruz S,González I,Martín R,García T.Food Control,2012,25(1):45.
[12]Noser J,Schneider P,Rother M,Schmutz H.Mycotoxin Research,2011,27(4):265.
[13]CHU F S,LAU H P,ZHANG G S.Journal of Immunological Methods,1982,55(1):73.
[14]YANG X X,LIU X X,WANG H,et al.Chinese Journal of Analytical Chemistry(杨星星,刘细霞,王弘,等.分析化学),2012,49(9):1347.
[15]MA L,ZHANG Y H,WU C S,et al.Science and Technology of Industry(马良,张宇昊,吴春生,等.现代食品科技),2016,32(5):1.
[16]QU Q Y,CHEN S S,LIU X W,et al.Chinese Journal of Oil Crop Sciences(瞿巧钰,陈珊珊,刘潇威,等.中国油料作物学报),2013,35:451.
[17]HE J Q,DUAN Z J,ZHANG Y,et al.Chinese Journal of Veterinary Medicine(何佳琪,段振娟,张燕,等.中国兽医杂志),2008,2(44):88.
[18]SUN F L,DIAO Y X,SUN N.Scientia Agricultural Sinica(孙法良,刁有祥,孙宁.中国农业科学),2009,5(42):1813.
[19]JIA C G,ZHI A M,SONG C M,et al.Acta Agriculturae Boreali-occidentalis Sinica(贾国超,职爱民,宋春美,等.西北农业学报),2013,6(22):27.
[20]WAN Y P,HAN L,WU P,et al.Jiangsu Journal of Agricultural Sciences(万宇平,韩黎,吴鹏,等.江苏农业学报),2013,3(29):659.
[21]TANG W G.The Preparation and Application of Medical Test Diagnosis Reagent.Shanghai:Shanghai Science and Technology Literature Press(唐伟国.医学检验诊断试剂的制备与应用.上海:上海科学技术文献出版社),1996:12.
Study on Indirect Competitive Enzyme Immunoassay and
Rapid Detection Kit for Tenuazonic Acid
ZHONG Hong, MA Liang*, ZHANG Yu-hao, SU Min, PAN Shu-li
(College of Food Science,Southwest University,Chongqing 400715)
Abstract:An indirect competitive enzyme immunoassay and rapid detection kit with polyclonal antiserum was established for rapid screening of tenuazonic acid(TA) in food.Two TA-amine conjugates(TAO-BSA and TAO-KLH) were synthesized by using carboxymethoxylaminc hemihydrochloride to derivatize TA and coupling the products with carrier protein through the active ester method.Female Balb/c mouse were subcutaneously immunized with the TAO-KLH for obtaining mouse polyclonal antiserum.The effecting factors of icELISA were optimized.Under optimized conditions,the 50% inhibiting concentration was 1.48 ng/mL.The regression equation was y=-21.65x+53.68,R2=0.9941.The linear range was 0.06-35.95 ng/mL.The sensitivity of the kit was 0.02 ng/mL,and the recovery was higher than 88.50%.The coefficient of variation of intra-assay and inter-assay was 2.48% and 9.49%,respectively.And no cross-reactivity with other mycotoxins was observed.
Keywords:Tenuazonic acid;Artificial antigen;Polyclonal antiserum;Enzyme immunoassay
摘 要:采用水热法制备NiCo2O4/还原石墨烯(rGO)复合材料。利用扫描电镜(SEM)和X-射线衍射(XRD)对所制备的材料进行了结构表征。通过对裸玻碳电极、NiCo2O4化学修饰电极、NiCo2O4/rGO复合修饰电极对葡萄糖的催化效果的比较,发现NiCo2O4/rGO复合修饰电极对葡萄糖具有良好的电催化氧化作用。当葡萄糖的浓度介于1~1 500 μmol/L时,其氧化峰电流与浓度具有良好的线性关系(R=0.9995)。检出限(S/N=3)低至0.1 μmol/L。该传感器的选择性、重现性和稳定性良好。
关键词:水热合成;钴酸镍;石墨烯;化学修饰电极
中图分类号:O657.1 文献标识码:A 文章编号:10066144(2017)0219005
参考文献:
[1] WANG Y L,BAO X Y,YANG Y,et al.Journal of Analytical Science(王艺兰,包晓玉,杨妍,等.分析科学学报),2016,32:71.
[2] Galant A L,Kaufman R C,Wilson J D.Food Chemistry,2015,188:149.
[3] Zaidi S A,Shin J H.Talanta,2016,149:30.
[4] Tian K,Prestgard M,Tiwari A.Mat Sci Eng:C,2014,41:100.
[5] Salazar P,Rico V,González-Elipe A R.Sensor Actuat B-Chem,2016,226:436.
[6] Rinaldi A L,Carballo R.Sensor Actuat B-Chem,2016,228:43.
[7] Tang X S,Zhang B,Xiao C H,et al.Sensor Actuat B-Chem,2016,222:232.
[8] Li M,Liu L B,Xiong Y P,et al.Sensor Actuat B-Chem,2015,207:614.
[9] Lien C H,Chen J C,Hu C C,et al.J Taiwan Inst Chem E,2014,45:846.
[10]Liu Y Y,Zhang Y J,Wang T,et al.RSC Adv,2014,4:33514.
[11]Radhakrishnan S,Kim S J.RSC Adv,2015,5:44346.
Non-enzymatic Amperometric Detection of Glucose
Using a NiCo2O4/rGO Nanocomposite
Modified Electrode
YANG Yi-chen, QIAN Yuan, XIAO Yao, DAI Gao-peng,
LUO Tian-xiong, LIU Su-qin*
(School of Chemical Engineering and Food Science,Hubei key Laboratoty of Low Dimensional
Optoelectronic Materials and Devices,Hubei University of Arts and Science,Xiangyang 441053)
Abstract:Flower-like NiCo2O4 spheres were successfully synthesized via a facile one-pot hydrothermal method without any templates or surfactants.The morphology and structure is characterized by scanning electron microscope(SEM) and X-ray diffractometer(XRD).The as-prepared NiCo2O4 and reduced graphene oxide nanocomposite modified glassy carbon electrode showed remarkable electrochemical performance for non-enzymatic glucose detection.In the scan rate range from 20 to 300 mV/s,the anoidic peak current had linear relationship with scan rate.It indicated that a-n absorption controlled detector-chemical process happened.The anoidic current was proportional to the glucose concentration and the calibration plots was linear over the concentration ranges from 1 μmol/L to 1 500 μmol/L.The detection limit of the method was 0.1 μmol/L(S/N=3).Furthermore,the results also showed that the sensor had good selectivity,appreciable stability,repeatability and reproducibility.
Keywords:Hydrothermal synthesis;NiCo2O4;Reduced grapheme oxide;Chemical modified electrode
摘 要:本文以D-(+)-氨基葡萄糖盐酸盐为原料,通过环合、氧化和烷基化等系列反应,合成了新型化合物N-戊基-2-甲基-3-乙酰基-5-吡咯甲醛,并利用红外(IR)光谱、核磁共振(1H NMR、13C NMR)和高分辨质谱(HR-MS)等波谱技术对其结构进行了确证。采用正交试验优化了合成条件,通过热重-微分热重-差示扫描量热法(TG-DTG-DSC)研究了该化合物热失重变化,采用热裂解-气相色谱/质谱(Py-GC/MS)联用技术分析了该化合物的热裂解产物。结果表明化合物Ⅳ为目标化合物N-戊基-2-甲基-3-乙酰基-5-吡咯甲醛。目标化合物的最优合成条件为:反应温度60℃、反应时间24 h、摩尔比1.0∶1.1,产率可达81%;目标化合物在136.3~290.0℃间有一个剧烈的失重过程,失重率达到98.58%;目标化合物在300、600、900℃裂解条件下共裂解出41种化合物,其中有吡嗪、2,5-二甲基吡嗪、戊醛等多种香味成分。初步探讨了目标化合物可能的热裂解机理。
关键词:合成;N-戊基-2-甲基-3-乙酰基-5-吡咯甲醛;热裂解-气相色谱/质谱;热分析
中图分类号:O657.63 文献标识码:A 文章编号:10066144(2017)0218307
参考文献:
[1] Lee S M,Kwon G Y,Kim K O,Kim Y S.Analytica Chimica Acta,2011,703(2):204.
[2] Boger D L,Boyee C W,LbroliI M A,Sehon C A,Qing J.Journal of the American Chemical Society,1999,121(1):54.
[3] LIANG Y,KE S Y,WANG K M,YANG Z W.Chinese Journal of Organic Chemistry(梁英,柯少勇,王开梅,杨自文.有机化学),2010,30(12):1801.
[4] Matsushita K,Toyama H,Yamada M,Adachi O.Applied Microbiology and Biotechnology,2002,58(1):13.
[5] Misharina T A,Mukhutdinova S M,Zharikova G G,Terenina M B,Krikunova N I,Medvedeva I B.Applied Biochemistry and Microbiology,2009,45(5):544.
[6] Smidt C R,Steinberg F M,Rucker R B.Experimental Biology and Medicine,1991,197(1):19.
[7] Tehrani K A,Kersiene M,Adams A,Venskutonis R,Kimpe N D.Journal of Agricultural and Food Chemistry,2002,50(14):4062.
[8] Yu S,Saenz J,Srirangam J.Journal of Organic Chemistry,2002,67(5):1699.
[9] Bullington J L,Wolf R R,Jackson P F.Journal of Organic Chemistry,2002,67(26):9439.
[10]Lee D,Swager M.Journal of the American Chemical Society,2003,125(23):6870.
[11]Azioune A,Slimane A B,Hamou L A,Pleuvy A,Chehimi M M,Perruchot C,Armes S P.Langmuir,2004,20(8):3350.
[12]Shenoy S L,Cohen D,Erkey C,Weiss R A.Industrial & Engineering Chemistry Research,2002,41(6):1484.
[13]XIE J P.Tobacco Flavor Technology Principle and Application.Beijing:Chemical Industry Press(谢剑平.烟草香料技术原理与应用.北京:化学工业出版社),2009:141.
[14]ZHONG H X,CAI J B,YANG D H,FAN J Q,XIE W,LIU J S,SU Q D.Journal of Analytical Science(钟洪祥,蔡继宝,杨达辉,范坚强,谢卫,刘江生,苏庆德.分析科学学报),2004,20(2):223.
[15]WU D F,CHEN H L,JI X M,ZHAO M Q.Fine Chemicals(武丹风,陈红丽,姬小明,赵铭钦.精细化工),2014,31(1):54.
[16]Gerbera L,Eliassonb M,Tryggb J,Moritza T,Sundberga B.Journal of Analytical and Applied Pyrolysis,2012,95:95.
[17]WU Y Q,YANG L,LIU F,MIAO M M,ZHU H Y.Chinese Journal of Analytical Chemistry(吴亿勤,杨柳,刘芳,缪明明,朱洪友.分析化学),2007,35(7):1035.
[18]LAI M,ZHAO B Y,JI X M,FU P P,BAO X R,ZHAO M Q.Journal of Chinese Mass Spectrometry Society(来苗,赵博亚,姬小明,付培培,包晓容,赵铭钦.质谱学报),2015,36(6):543.
[19]KONG H H,LU H,CHEN C L,ZHOU H Y,ZHOU R.Journal of Instrumental Analysis(孔浩辉,鲁虹,陈翠玲,周海云,周瑢.分析测试学报),2010,29(6):612.
[20]Li X H,Meng Y Z,Zhu Q,Tjong S C.Polymer Degradation and Stability,2003,81(1):157.
[21]YAN L,KONG J,HOU L L.Journal of HeNan University(Natural Sciernce)(严琳,孔军,侯莉莉.河南大学学报(自然科学版)),2011,41(3):257.
[22]Baker R R,Bishop L J.Journal of Analytical and Applied Pyrolysis,2004,71(1):223.
[23]CUI J L,JIN Y S,WANG J,LI D H,ZHOU Y L.Journal of Analytical Science(崔龙吉,金玉善,王娟,李东浩,邹依霖.分析科学学报),2016,32(1):145.
[24]WU L J,DUAN J,LI C Z,CAO J L,Li Q Q,MIN S G.Journal of Analytical Science(吴丽君,段佳,李春子,曹金莉,李倩倩,闵顺耕.分析科学学报),2012,28(6):807.
[25]ZHAO M Q,LI Y S,JI X M,MA Lin.Blending of Flavor in Cigarette.Beijing:China Agriculture Press(赵铭钦,李元实,姬小明,马林.卷烟调香学.北京:中国农业出版社),2013:187.
Synthesis of New Formacyl-pyrrole Derivative and Its Analysis by
Pyrolysis-Gas Chromatography/Mass Spectrometry
TAO Tao1, ZHAO Hua-xin2, JI Xiao-ming*1
(1.College of Tobacco Science,Henan Agricultural University,Zhengzhou 450002;
2.College of Life Science,Henan Aqricultural University,Zhengzhou 450002)
Abstract:In order to develop a new flavor precursor of pyrroles,a new compound,3-acetyl-N-amyl-2-methyl-5-pyrrolecarboxaldehyde was synthesized by cyclization reaction,oxidation reaction and alkylation reaction.Its structure was confirmed by 1H NMR,13C NMR,IR and HR-MS spectra.The optimal conditions for synthesis were obtained by orthogonal array design.Its thermal stabilities were studied by using themogravimetry-derivative themogravimetry-differential scanning calorimetry(TG-DTG-DSC).And its pyrolytic products were analyzed by pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS).The result showed that the target compound,was successfully synthesized.The optimal synthesis conditions were obtained as follows:reaction temperature 60℃,reaction time 24 h,mole ratio 1.0∶1.1.Under the optimal synthesis conditions,the reaction yield could reach 81%.Target compound had a severe degradation stage at 136.3-290.0℃ with mass loss of 98.58%.41 prolysis products including flavorous substances pyrazine,2,-5-dimethyl pyrazine and pentanal were detected at 300,600,900℃,and possible pyrolysis mechanism of target compound was preliminarily discussed.
Keywords:Synthesis;3-Acetyl-N-amyl-2-methyl-5-pyrrolecarboxaldehyde;Pyrolysis-gas chromatography/mass spectrometry;Thermal analysis
摘 要:构建了一个适配体修饰的CdTe纳米探针,利用磁性纳米粒子的分离技术,采用示差脉冲伏安法检测凝血酶。磁性纳米粒子作为分离材料,CdTe纳米粒子作为电化学探针,通过凝血酶的特异性识别,适配体从DNA双链中解旋,并与凝血酶结合形成G-四重体结构,达到检测凝血酶的目的,检出限达0.13 pmol/L。该方法灵简便、灵敏、成本低,并成功用于实际样品的检测。此外,该方法可被广泛应用于蛋白质监测和疾病诊断。
关键词:适配体;凝血酶;纳米粒子;电化学适配体传感器
中图分类号:O657.1 文献标识码:A 文章编号:10066144(2017)0217706
参考文献:
[1] Xu N,Wang Q B,Lei J P,Liu L,Ju H X.Talanta,2015,132:387.
[2] Shim W B,Kim M J,Mun H Y,Kim M G.Biosensors and Bioelectronics,2014,62(53):288.
[3] Yuan F,Chen H Q,Xu J,Zhang Y Y,Wu Y,Wang L.Chemistry-a European Journal,2014,20(13):2888.
[4] Li N,Ho C M.Journal of the American Chemical Society,2008,130(8):2380.
[5] Yang X J,Han Q X,Zhang Y E,Wu J,Tang X L,Dong C X,Liu W S.Talanta,2015,131:672.
[6] Tang Z W,Mallikaratchy P,Yang R H,Kim Y M,Zhu Z,Wang H,Tan W H.Journal of the American Chemical Society,2008,130(33):11268.
[7] Elgawad R A,C.Sullivan K O.Chemical Communications,2006,32(32):3432.
[8] WANG Y X,YE Z Z,SI C Y,YING Y B.Chines Journal of Analytical Chemistry(王一娴,叶尊忠,斯城燕,应义斌.分析化学),2012,40(4):634.
[9] MA L N,LIU D J,WANG Z X.Chines Journal of Analytical Chemistry(马立娜,刘殿骏,王振新.分析化学),2014,42(3):332.
[10]Xu J,Weizmann Y,Krikhely N,Baron R,Willner 1.Small,2006,2(10):1178.
[11]KUI Y R,MING R J,WANG S F,YUAN Q.Journal of Analytical Science(隗予荣,明瑞杰,王升富,袁荃.分析科学学报),2016,32(1):1.
[12]WANG X F,ZHAO Q,SHUANG S M.Journal of Analytical Science(王晓芳,赵强,双少敏.分析科学学报),2012,28(2):227.
[13]Wataru Y,Yokobayashi Y.Chemical Communications,2007,32(1):192.
[14]Wang L H,Liu X F,Hu X F,Song S P,Fan C H.Chemical Communications,2006,36:3780.
[15]Zheng J,Feng W J,Lin L,Zhang F,Cheng G F,He P G,Fang Y Z.Biosensors and Bioelectronics,2007,23(3):341.
[16]Yang H,Ji J,Liu Y,Kong J L,Liu B H.Electrochemistry Communications,2009,11(1):38.
[17]Son A,Dosev D,Nichkova M,Ma Z Y,Kennedy I M,Scow K M,Hristova K R.Analytical Biochemistry,2007,370(2):186.
[18]Kouassi G K,Irudayaraj.Journal Analytical Chemistry,2006,78(10):3234.
[19]Zhao D,He Z K,Chan W H,Choi M M F.Journal Physical Chemistry C,2008,112(4):1293.
[20]H F Qian,C Q Dong,J L Peng,X Qiu,Y H Xu,J C Ren.Journal Physical Chemistry C,2007,111(45):16852.
[21]Ye M,Zhang Y Y,Li H T,Zhang Y Q,Tan P,Tang H,Yao S Z.Biosensors and Bioelectronics,2009,24(8):2339.
A Novel Method for Detection of Thrombin Using Aptamer-
Modified CdTe Nanoparticles Coupled to Au-Magnetic Beads
WEN Yan-qing*1, LONG Qian1, ZHANG You-yu2, LI Hai-tao1,2
(1.Support Center for Safety Technology,Hunan Vocational Institute of Safety Technology,
Changsha 410151;
2.Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research(Ministry of Education),
College of Chemistry and Chemical Engineering,Hunan Normal University,Changsha 410081)
Abstract:We report a new method for detection of thrombin based on aptamer-modified cadmium tellurium nanoprobe using differential pulse voltammetry(DPV) technique.The magnetic nanoparticles were used for separation,and the CdTe nanoparticles acted as electrochemical signal marker.Through the specific recognition for thrombin,aptamer was liberated from the double-strand DNA,and bound with the thrombin to fold into a structure of G-quadruplex.The detection limit reached 0.13 pmol/L.This method is demonstrated to be simple,sensitive and low-cost and successfully applied to detection of thrombin in real samples.Furthermore,this method could also be applied to protein monitoring and disease diagnosis.
Keywords:Aptamers;Thrombin;Nanoparticles;Electrochemical aptasensor